IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53437-5.html
   My bibliography  Save this article

Ultrahigh thermal stability and piezoelectricity of lead-free KNN-based texture piezoceramics

Author

Listed:
  • Lihui Xu

    (Tongji University)

  • Jinfeng Lin

    (Tongji University)

  • Yuxuan Yang

    (Xi’an Jiaotong University)

  • Zhihao Zhao

    (Xi’an Jiaotong University)

  • Xiaoming Shi

    (University of Science and Technology Beijing)

  • Guanglong Ge

    (Tongji University)

  • Jin Qian

    (Tongji University)

  • Cheng Shi

    (Tongji University)

  • Guohui Li

    (Tongji University)

  • Simin Wang

    (Tongji University)

  • Yang Zhang

    (Xi’an Jiaotong University)

  • Peng Li

    (Liaocheng University)

  • Bo Shen

    (Tongji University)

  • Zhengqian Fu

    (State Key Lab High Performance Ceram & Superfine)

  • Haijun Wu

    (Xi’an Jiaotong University)

  • Houbing Huang

    (Beijing Institute of Technology)

  • Fei Li

    (Xi’an Jiaotong University)

  • Xiangdong Ding

    (Xi’an Jiaotong University)

  • Jun Sun

    (Xi’an Jiaotong University)

  • Jiwei Zhai

    (Tongji University)

Abstract

The contradiction between high piezoelectricity and uniquely poor temperature stability generated by polymorphic phase boundary is a huge obstacle to high-performance (K, Na)NbO3 -based ceramics entering the application market as Pb-based substitutes. We possess the phase boundary by mimicking Pb(Zr, Ti)O3’s morphotropic phase boundary structure via the synergistic optimization of diffusion phase boundary and crystal orientation in 0.94(Na0.56K0.44)NbO3−0.03Bi0.5Na0.5ZrO3−0.03(Bi0.5K0.5)HfO3 textured ceramics. As a result, a prominent comprehensive performance is obtained, including giant d33 of 550 ± 30 pC/N and ultrahigh temperature stability (d33 change rate less than 1.2% within 25-150 °C), representing a significant breakthrough in lead-free piezoceramics, even surpassing the Pb-based piezoelectric ceramics. Within the same temperature range, the d33 change rate of the commercial Pb(Zr, Ti)O3−5 ceramics is only about 10%, and more importantly, its d33 (~ 350 pC/N) is much lower than that of the (K, Na)NbO3-based ceramics in this work. This study demonstrates a strategy for constructing the phase boundary with MPB feature, settling the problem of temperature instability in (K, Na)NbO3-based ceramics.

Suggested Citation

  • Lihui Xu & Jinfeng Lin & Yuxuan Yang & Zhihao Zhao & Xiaoming Shi & Guanglong Ge & Jin Qian & Cheng Shi & Guohui Li & Simin Wang & Yang Zhang & Peng Li & Bo Shen & Zhengqian Fu & Haijun Wu & Houbing H, 2024. "Ultrahigh thermal stability and piezoelectricity of lead-free KNN-based texture piezoceramics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53437-5
    DOI: 10.1038/s41467-024-53437-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53437-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53437-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miro Kroutvar & Yann Ducommun & Dominik Heiss & Max Bichler & Dieter Schuh & Gerhard Abstreiter & Jonathan J. Finley, 2004. "Optically programmable electron spin memory using semiconductor quantum dots," Nature, Nature, vol. 432(7013), pages 81-84, November.
    2. Muhtar Ahart & Maddury Somayazulu & R. E. Cohen & P. Ganesh & Przemyslaw Dera & Ho-kwang Mao & Russell J. Hemley & Yang Ren & Peter Liermann & Zhigang Wu, 2008. "Origin of morphotropic phase boundaries in ferroelectrics," Nature, Nature, vol. 451(7178), pages 545-548, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengqian Fu & Xuefeng Chen & Henchang Nie & Yanyu Liu & Jiawang Hong & Tengfei Hu & Ziyi Yu & Zhenqin Li & Linlin Zhang & Heliang Yao & Yuanhua Xia & Zhipeng Gao & Zheyi An & Nan Zhang & Fei Cao & He, 2022. "Atomic reconfiguration among tri-state transition at ferroelectric/antiferroelectric phase boundaries in Pb(Zr,Ti)O3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Salazar, R. & Serrano, M. & Abdelkefi, A., 2020. "Fatigue in piezoelectric ceramic vibrational energy harvesting: A review," Applied Energy, Elsevier, vol. 270(C).
    3. Jinzhu Zou & Miao Song & Xuefan Zhou & Wenchao Chi & Tongxin Wei & Kechao Zhou & Dou Zhang & Shujun Zhang, 2024. "Enhancing piezoelectric coefficient and thermal stability in lead-free piezoceramics: insights at the atomic-scale," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Peter Millington-Hotze & Santanu Manna & Saimon F. Covre da Silva & Armando Rastelli & Evgeny A. Chekhovich, 2023. "Nuclear spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53437-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.