IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38349-0.html
   My bibliography  Save this article

Nuclear spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot

Author

Listed:
  • Peter Millington-Hotze

    (University of Sheffield)

  • Santanu Manna

    (Johannes Kepler University Linz
    Indian Institute of Technology Delhi)

  • Saimon F. Covre da Silva

    (Johannes Kepler University Linz)

  • Armando Rastelli

    (Johannes Kepler University Linz)

  • Evgeny A. Chekhovich

    (University of Sheffield)

Abstract

The spin diffusion concept provides a classical description of a purely quantum-mechanical evolution in inhomogeneously polarized many-body systems such as nuclear spin lattices. The central spin of a localized electron alters nuclear spin diffusion in a way that is still poorly understood. Here, spin diffusion in a single GaAs/AlGaAs quantum dot is witnessed in the most direct manner from oscillatory spin relaxation dynamics. Electron spin is found to accelerate nuclear spin relaxation, from which we conclude that the long-discussed concept of a Knight-field-gradient diffusion barrier does not apply to GaAs epitaxial quantum dots. Our experiments distinguish between non-diffusion relaxation and spin diffusion, allowing us to conclude that diffusion is accelerated by the central electron spin. Such acceleration is observed up to unexpectedly high magnetic fields – we propose electron spin-flip fluctuations as an explanation. Diffusion-limited nuclear spin lifetimes range between 1 and 10 s, which is sufficiently long for quantum information storage and processing.

Suggested Citation

  • Peter Millington-Hotze & Santanu Manna & Saimon F. Covre da Silva & Armando Rastelli & Evgeny A. Chekhovich, 2023. "Nuclear spin diffusion in the central spin system of a GaAs/AlGaAs quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38349-0
    DOI: 10.1038/s41467-023-38349-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38349-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38349-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Zhai & Matthias C. Löbl & Giang N. Nguyen & Julian Ritzmann & Alisa Javadi & Clemens Spinnler & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2020. "Low-noise GaAs quantum dots for quantum photonics," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Miro Kroutvar & Yann Ducommun & Dominik Heiss & Max Bichler & Dieter Schuh & Gerhard Abstreiter & Jonathan J. Finley, 2004. "Optically programmable electron spin memory using semiconductor quantum dots," Nature, Nature, vol. 432(7013), pages 81-84, November.
    3. George Gillard & Edmund Clarke & Evgeny A. Chekhovich, 2022. "Harnessing many-body spin environment for long coherence storage and high-fidelity single-shot qubit readout," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. G. Sallen & S. Kunz & T. Amand & L. Bouet & T. Kuroda & T. Mano & D. Paget & O. Krebs & X. Marie & K. Sakoda & B. Urbaszek, 2014. "Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Millington-Hotze & Harry E. Dyte & Santanu Manna & Saimon F. Covre da Silva & Armando Rastelli & Evgeny A. Chekhovich, 2024. "Approaching a fully-polarized state of nuclear spins in a solid," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Bart & C. Dangel & P. Zajac & N. Spitzer & J. Ritzmann & M. Schmidt & H. G. Babin & R. Schott & S. R. Valentin & S. Scholz & Y. Wang & R. Uppu & D. Najer & M. C. Löbl & N. Tomm & A. Javadi & N. O. , 2022. "Wafer-scale epitaxial modulation of quantum dot density," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Clemens Spinnler & Liang Zhai & Giang N. Nguyen & Julian Ritzmann & Andreas D. Wieck & Arne Ludwig & Alisa Javadi & Doris E. Reiter & Paweł Machnikowski & Richard J. Warburton & Matthias C. Löbl, 2021. "Optically driving the radiative Auger transition," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Dylan Renaud & Daniel Rimoli Assumpcao & Graham Joe & Amirhassan Shams-Ansari & Di Zhu & Yaowen Hu & Neil Sinclair & Marko Loncar, 2023. "Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Paweł Holewa & Daniel A. Vajner & Emilia Zięba-Ostój & Maja Wasiluk & Benedek Gaál & Aurimas Sakanas & Marek Burakowski & Paweł Mrowiński & Bartosz Krajnik & Meng Xiong & Kresten Yvind & Niels Gregers, 2024. "High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Lihui Xu & Jinfeng Lin & Yuxuan Yang & Zhihao Zhao & Xiaoming Shi & Guanglong Ge & Jin Qian & Cheng Shi & Guohui Li & Simin Wang & Yang Zhang & Peng Li & Bo Shen & Zhengqian Fu & Haijun Wu & Houbing H, 2024. "Ultrahigh thermal stability and piezoelectricity of lead-free KNN-based texture piezoceramics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Nadia O. Antoniadis & Mark R. Hogg & Willy F. Stehl & Alisa Javadi & Natasha Tomm & Rüdiger Schott & Sascha R. Valentin & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2023. "Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38349-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.