IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53122-7.html
   My bibliography  Save this article

Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling

Author

Listed:
  • Clara Schäfer

    (University of Gothenburg, Box 462)

  • Rasmus Ringström

    (Chalmers University of Technology, Kemivägen 10)

  • Jörg Hanrieder

    (Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3
    University College London, London)

  • Martin Rahm

    (Chalmers University of Technology, Kemivägen 10)

  • Bo Albinsson

    (Chalmers University of Technology, Kemivägen 10)

  • Karl Börjesson

    (University of Gothenburg, Box 462)

Abstract

Organic dyes typically have electronically excited states of both singlet and triplet multiplicity. Controlling the energy difference between these states is a key factor for making efficient organic light emitting diodes and triplet sensitizers, which fulfill essential functions in chemistry, physics, and medicine. Here, we propose a strategy to shift the singlet excited state of a known sensitizer to lower energies without shifting the energy of the triplet state, thus without compromising the ability of the sensitizer to do work. We covalently connect two to four sensitizers in such a way that their transition dipole moments are aligned in a head-to-tail fashion, but, through steric encumbrance, the delocalization is minimized between each moiety. Exciton coupling between the singlet excited states considerably lowers the first excited singlet state energy. However, the energy of the lowest triplet excited state is unperturbed because the exciton coupling strength depends on the magnitude of the transition dipole moments, which for triplets are very small. We expect that the presented strategy of designed intramolecular exciton coupling will be a useful concept in the design of both photosensitizers and emitters for organic light emitting diodes as both benefits from a small singlet-triplet energy gap.

Suggested Citation

  • Clara Schäfer & Rasmus Ringström & Jörg Hanrieder & Martin Rahm & Bo Albinsson & Karl Börjesson, 2024. "Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53122-7
    DOI: 10.1038/s41467-024-53122-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53122-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53122-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi Yu & Suman Mallick & Mao Wang & Karl Börjesson, 2021. "Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Kati Stranius & Manuel Hertzog & Karl Börjesson, 2018. "Selective manipulation of electronically excited states through strong light–matter interactions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arpan Dutta & Ville Tiainen & Ilia Sokolovskii & Luís Duarte & Nemanja Markešević & Dmitry Morozov & Hassan A. Qureshi & Siim Pikker & Gerrit Groenhof & J. Jussi Toppari, 2024. "Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Fan Wu & Daniel Finkelstein-Shapiro & Mao Wang & Ilmari Rosenkampff & Arkady Yartsev & Torbjörn Pascher & Tu C. Nguyen- Phan & Richard Cogdell & Karl Börjesson & Tönu Pullerits, 2022. "Optical cavity-mediated exciton dynamics in photosynthetic light harvesting 2 complexes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Hangyong Shan & Ivan Iorsh & Bo Han & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Takashi Taniguchi & Sebastian Klembt & Sven Höfling & S, 2022. "Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Minjung Son & Zachary T. Armstrong & Ryan T. Allen & Abitha Dhavamani & Michael S. Arnold & Martin T. Zanni, 2022. "Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Raj Pandya & Richard Y. S. Chen & Qifei Gu & Jooyoung Sung & Christoph Schnedermann & Oluwafemi S. Ojambati & Rohit Chikkaraddy & Jeffrey Gorman & Gianni Jacucci & Olimpia D. Onelli & Tom Willhammar &, 2021. "Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Ruixiang Chen & Ningning Liang & Tianrui Zhai, 2024. "Dual-color emissive OLED with orthogonal polarization modes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Chiao-Yu Cheng & Nina Krainova & Alyssa N. Brigeman & Ajay Khanna & Sapana Shedge & Christine Isborn & Joel Yuen-Zhou & Noel C. Giebink, 2022. "Molecular polariton electroabsorption," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53122-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.