IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35589-4.html
   My bibliography  Save this article

Molecular polariton electroabsorption

Author

Listed:
  • Chiao-Yu Cheng

    (The Pennsylvania State University)

  • Nina Krainova

    (The Pennsylvania State University)

  • Alyssa N. Brigeman

    (The Pennsylvania State University)

  • Ajay Khanna

    (University of California Merced)

  • Sapana Shedge

    (University of California Merced)

  • Christine Isborn

    (University of California Merced)

  • Joel Yuen-Zhou

    (University of California San Diego)

  • Noel C. Giebink

    (The Pennsylvania State University)

Abstract

We investigate electroabsorption (EA) in organic semiconductor microcavities to understand whether strong light-matter coupling non-trivially alters their nonlinear optical [ $${\chi }^{(3)}\left(\omega,{{{{\mathrm{0,0}}}}}\right)$$ χ ( 3 ) ω , 0, 0 ] response. Focusing on strongly-absorbing squaraine (SQ) molecules dispersed in a wide-gap host matrix, we find that classical transfer matrix modeling accurately captures the EA response of low concentration SQ microcavities with a vacuum Rabi splitting of $$\hslash \Omega \approx 200$$ ℏ Ω ≈ 200 meV, but fails for high concentration cavities with $$\hslash \Omega \approx 420$$ ℏ Ω ≈ 420 meV. Rather than new physics in the ultrastrong coupling regime, however, we attribute the discrepancy at high SQ concentration to a nearly dark H-aggregate state below the SQ exciton transition, which goes undetected in the optical constant dispersion on which the transfer matrix model is based, but nonetheless interacts with and enhances the EA response of the lower polariton mode. These results indicate that strong coupling can be used to manipulate EA (and presumably other optical nonlinearities) from organic microcavities by controlling the energy of polariton modes relative to other states in the system, but it does not alter the intrinsic optical nonlinearity of the organic semiconductor inside the cavity.

Suggested Citation

  • Chiao-Yu Cheng & Nina Krainova & Alyssa N. Brigeman & Ajay Khanna & Sapana Shedge & Christine Isborn & Joel Yuen-Zhou & Noel C. Giebink, 2022. "Molecular polariton electroabsorption," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35589-4
    DOI: 10.1038/s41467-022-35589-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35589-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35589-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mao Wang & Manuel Hertzog & Karl Börjesson, 2021. "Polariton-assisted excitation energy channeling in organic heterojunctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Javier Galego & Francisco J. Garcia-Vidal & Johannes Feist, 2016. "Suppressing photochemical reactions with quantized light fields," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    3. Taili Liu & Yishu Foo & Juan Antonio Zapien & Menglin Li & Sai-Wing Tsang, 2019. "A generalized Stark effect electromodulation model for extracting excitonic properties in organic semiconductors," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Yi Yu & Suman Mallick & Mao Wang & Karl Börjesson, 2021. "Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Kuidong Wang & Marcus Seidel & Kalaivanan Nagarajan & Thibault Chervy & Cyriaque Genet & Thomas Ebbesen, 2021. "Large optical nonlinearity enhancement under electronic strong coupling," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arpan Dutta & Ville Tiainen & Ilia Sokolovskii & Luís Duarte & Nemanja Markešević & Dmitry Morozov & Hassan A. Qureshi & Siim Pikker & Gerrit Groenhof & J. Jussi Toppari, 2024. "Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Fan Wu & Daniel Finkelstein-Shapiro & Mao Wang & Ilmari Rosenkampff & Arkady Yartsev & Torbjörn Pascher & Tu C. Nguyen- Phan & Richard Cogdell & Karl Börjesson & Tönu Pullerits, 2022. "Optical cavity-mediated exciton dynamics in photosynthetic light harvesting 2 complexes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Hangyong Shan & Ivan Iorsh & Bo Han & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Takashi Taniguchi & Sebastian Klembt & Sven Höfling & S, 2022. "Brightening of a dark monolayer semiconductor via strong light-matter coupling in a cavity," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Christian Schäfer & Johannes Flick & Enrico Ronca & Prineha Narang & Angel Rubio, 2022. "Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Joel Kuttruff & Marco Romanelli & Esteban Pedrueza-Villalmanzo & Jonas Allerbeck & Jacopo Fregoni & Valeria Saavedra-Becerril & Joakim Andréasson & Daniele Brida & Alexandre Dmitriev & Stefano Corni &, 2023. "Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Sudhi Mahadevan & Taili Liu & Saied Md Pratik & Yuhao Li & Hang Yuen Ho & Shanchao Ouyang & Xinhui Lu & Hin-Lap Yip & Philip C. Y. Chow & Jean-Luc Brédas & Veaceslav Coropceanu & Shu Kong So & Sai-Win, 2024. "Assessing intra- and inter-molecular charge transfer excitations in non-fullerene acceptors using electroabsorption spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Andreas Mischok & Bernhard Siegmund & Florian Le Roux & Sabina Hillebrandt & Koen Vandewal & Malte C. Gather, 2024. "Breaking the angular dispersion limit in thin film optics by ultra-strong light-matter coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Raj Pandya & Richard Y. S. Chen & Qifei Gu & Jooyoung Sung & Christoph Schnedermann & Oluwafemi S. Ojambati & Rohit Chikkaraddy & Jeffrey Gorman & Gianni Jacucci & Olimpia D. Onelli & Tom Willhammar &, 2021. "Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Daniel Timmer & Moritz Gittinger & Thomas Quenzel & Sven Stephan & Yu Zhang & Marvin F. Schumacher & Arne Lützen & Martin Silies & Sergei Tretiak & Jin-Hui Zhong & Antonietta De Sio & Christoph Lienau, 2023. "Plasmon mediated coherent population oscillations in molecular aggregates," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Clara Schäfer & Rasmus Ringström & Jörg Hanrieder & Martin Rahm & Bo Albinsson & Karl Börjesson, 2024. "Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35589-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.