Optical cavity-mediated exciton dynamics in photosynthetic light harvesting 2 complexes
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-34613-x
Download full text from publisher
References listed on IDEAS
- Mao Wang & Manuel Hertzog & Karl Börjesson, 2021. "Polariton-assisted excitation energy channeling in organic heterojunctions," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Andrea B. Grafton & Adam D. Dunkelberger & Blake S. Simpkins & Johan F. Triana & Federico J. Hernández & Felipe Herrera & Jeffrey C. Owrutsky, 2021. "Excited-state vibration-polariton transitions and dynamics in nitroprusside," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- David M. Coles & Yanshen Yang & Yaya Wang & Richard T. Grant & Robert A. Taylor & Semion K. Saikin & Alán Aspuru-Guzik & David G. Lidzey & Joseph Kuo-Hsiang Tang & Jason M. Smith, 2014. "Strong coupling between chlorosomes of photosynthetic bacteria and a confined optical cavity mode," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
- Kati Stranius & Manuel Hertzog & Karl Börjesson, 2018. "Selective manipulation of electronically excited states through strong light–matter interactions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ilia Sokolovskii & Ruth H. Tichauer & Dmitry Morozov & Johannes Feist & Gerrit Groenhof, 2023. "Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Minjung Son & Zachary T. Armstrong & Ryan T. Allen & Abitha Dhavamani & Michael S. Arnold & Martin T. Zanni, 2022. "Energy cascades in donor-acceptor exciton-polaritons observed by ultrafast two-dimensional white-light spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Qi Yu & Joel M. Bowman, 2023. "Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Arpan Dutta & Ville Tiainen & Ilia Sokolovskii & Luís Duarte & Nemanja Markešević & Dmitry Morozov & Hassan A. Qureshi & Siim Pikker & Gerrit Groenhof & J. Jussi Toppari, 2024. "Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Tao E. Li & Abraham Nitzan & Joseph E. Subotnik, 2022. "Energy-efficient pathway for selectively exciting solute molecules to high vibrational states via solvent vibration-polariton pumping," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Andreas Mischok & Bernhard Siegmund & Florian Le Roux & Sabina Hillebrandt & Koen Vandewal & Malte C. Gather, 2024. "Breaking the angular dispersion limit in thin film optics by ultra-strong light-matter coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Clara Schäfer & Rasmus Ringström & Jörg Hanrieder & Martin Rahm & Bo Albinsson & Karl Börjesson, 2024. "Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Ruixiang Chen & Ningning Liang & Tianrui Zhai, 2024. "Dual-color emissive OLED with orthogonal polarization modes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Chiao-Yu Cheng & Nina Krainova & Alyssa N. Brigeman & Ajay Khanna & Sapana Shedge & Christine Isborn & Joel Yuen-Zhou & Noel C. Giebink, 2022. "Molecular polariton electroabsorption," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34613-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.