IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53082-y.html
   My bibliography  Save this article

How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody

Author

Listed:
  • Tara C. Marcink

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Gillian Zipursky

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Elizabeth B. Sobolik

    (University of Washington)

  • Kate Golub

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Emily Herman

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Kyle Stearns

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

  • Alexander L. Greninger

    (University of Washington
    Fred Hutchinson Cancer Research Center)

  • Matteo Porotto

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons
    University of Campania “Luigi Vanvitelli”)

  • Anne Moscona

    (Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons
    Columbia University Vagelos College of Physicians and Surgeons)

Abstract

Paramyxoviruses including measles, Nipah, and parainfluenza viruses are public health threats with pandemic potential. Human parainfluenza virus type 3 (HPIV3) is a leading cause of illness in pediatric, older, and immunocompromised populations. There are no approved vaccines or therapeutics for HPIV3. Neutralizing monoclonal antibodies (mAbs) that target viral fusion are a potential strategy for mitigating paramyxovirus infection, however their utility may be curtailed by viral evolution that leads to resistance. Paramyxoviruses enter cells by fusing with the cell membrane in a process mediated by a complex consisting of a receptor binding protein (HN) and a fusion protein (F). Existing atomic resolution structures fail to reveal physiologically relevant interactions during viral entry. We present cryo-ET structures of pre-fusion HN-F complexes in situ on surfaces of virions that evolved resistance to an anti-HPIV3 F neutralizing mAb. Single mutations in F abolish mAb binding and neutralization. In these complexes, the HN protein that normally restrains F triggering has shifted to uncap the F apex. These complexes are more readily triggered to fuse. These structures shed light on the adaptability of the pre-fusion HN-F complex and mechanisms of paramyxoviral resistance to mAbs, and help define potential barriers to resistance for the design of mAbs.

Suggested Citation

  • Tara C. Marcink & Gillian Zipursky & Elizabeth B. Sobolik & Kate Golub & Emily Herman & Kyle Stearns & Alexander L. Greninger & Matteo Porotto & Anne Moscona, 2024. "How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53082-y
    DOI: 10.1038/s41467-024-53082-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53082-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53082-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lihong Liu & Sho Iketani & Yicheng Guo & Jasper F.-W. Chan & Maple Wang & Liyuan Liu & Yang Luo & Hin Chu & Yiming Huang & Manoj S. Nair & Jian Yu & Kenn K.-H. Chik & Terrence T.-T. Yuen & Chaemin Yoo, 2022. "Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2," Nature, Nature, vol. 602(7898), pages 676-681, February.
    2. Madelyn Cabán & Justas V. Rodarte & Madeleine Bibby & Matthew D. Gray & Justin J. Taylor & Marie Pancera & Jim Boonyaratanakornkit, 2023. "Cross-protective antibodies against common endemic respiratory viruses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Michael B. Battles & Vicente Más & Eduardo Olmedillas & Olga Cano & Mónica Vázquez & Laura Rodríguez & José A. Melero & Jason S. McLellan, 2017. "Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Hoffmann & Lok-Yin Roy Wong & Prerna Arora & Lu Zhang & Cheila Rocha & Abby Odle & Inga Nehlmeier & Amy Kempf & Anja Richter & Nico Joel Halwe & Jacob Schön & Lorenz Ulrich & Donata Hoffmann & , 2023. "Omicron subvariant BA.5 efficiently infects lung cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Wenkai Han & Ningning Chen & Xinzhou Xu & Adil Sahil & Juexiao Zhou & Zhongxiao Li & Huawen Zhong & Elva Gao & Ruochi Zhang & Yu Wang & Shiwei Sun & Peter Pak-Hang Cheung & Xin Gao, 2023. "Predicting the antigenic evolution of SARS-COV-2 with deep learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Hassen Kared & Asia-Sophia Wolf & Amin Alirezaylavasani & Anthony Ravussin & Guri Solum & Trung The Tran & Fridtjof Lund-Johansen & John Torgils Vaage & Lise Sofie Nissen-Meyer & Unni C. Nygaard & Ola, 2022. "Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Lifeng Zhang & Roy E. Welsch & Zhi Cao, 2022. "The Transmission, Infection Prevention, and Control during the COVID-19 Pandemic in China: A Retrospective Study," IJERPH, MDPI, vol. 19(5), pages 1-15, March.
    5. Madelyn Cabán & Justas V. Rodarte & Madeleine Bibby & Matthew D. Gray & Justin J. Taylor & Marie Pancera & Jim Boonyaratanakornkit, 2023. "Cross-protective antibodies against common endemic respiratory viruses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Yin-Feng Kang & Cong Sun & Jing Sun & Chu Xie & Zhen Zhuang & Hui-Qin Xu & Zheng Liu & Yi-Hao Liu & Sui Peng & Run-Yu Yuan & Jin-Cun Zhao & Mu-Sheng Zeng, 2022. "Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Yi-Zong Lee & Jerome Han & Yi-Nan Zhang & Garrett Ward & Keegan Braz Gomes & Sarah Auclair & Robyn L. Stanfield & Linling He & Ian A. Wilson & Jiang Zhu, 2024. "Rational design of uncleaved prefusion-closed trimer vaccines for human respiratory syncytial virus and metapneumovirus," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    8. Haofeng Wang & Qi Yang & Xiaoce Liu & Zili Xu & Maolin Shao & Dongxu Li & Yinkai Duan & Jielin Tang & Xianqiang Yu & Yumin Zhang & Aihua Hao & Yajie Wang & Jie Chen & Chenghao Zhu & Luke Guddat & Hong, 2023. "Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Alexandra Xan C. H. Nowakowski, 2023. "Same Old New Normal: The Ableist Fallacy of “Post-Pandemic” Work," Social Inclusion, Cogitatio Press, vol. 11(1), pages 16-25.
    10. Xiaolei Wang & Terrence Tsz-Tai Yuen & Ying Dou & Jingchu Hu & Renhao Li & Zheng Zeng & Xuansheng Lin & Huarui Gong & Celia Hoi-Ching Chan & Chaemin Yoon & Huiping Shuai & Deborah Tip-Yin Ho & Ivan Fa, 2023. "Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Saya Moriyama & Yuki Anraku & Shunta Taminishi & Yu Adachi & Daisuke Kuroda & Shunsuke Kita & Yusuke Higuchi & Yuhei Kirita & Ryutaro Kotaki & Keisuke Tonouchi & Kohei Yumoto & Tateki Suzuki & Taiyou , 2023. "Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Tomohiro Takano & Takashi Sato & Ryutaro Kotaki & Saya Moriyama & Shuetsu Fukushi & Masahiro Shinoda & Kiyomi Kabasawa & Nagashige Shimada & Mio Kousaka & Yu Adachi & Taishi Onodera & Kazutaka Terahar, 2023. "Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Johannes P. M. Langedijk & Freek Cox & Nicole V. Johnson & Daan Overveld & Lam Le & Ward Hoogen & Richard Voorzaat & Roland Zahn & Leslie Fits & Jarek Juraszek & Jason S. McLellan & Mark J. G. Bakkers, 2024. "Universal paramyxovirus vaccine design by stabilizing regions involved in structural transformation of the fusion protein," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Alief Moulana & Thomas Dupic & Angela M. Phillips & Jeffrey Chang & Serafina Nieves & Anne A. Roffler & Allison J. Greaney & Tyler N. Starr & Jesse D. Bloom & Michael M. Desai, 2022. "Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 Omicron BA.1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Qihong Yan & Xijie Gao & Banghui Liu & Ruitian Hou & Ping He & Yong Ma & Yudi Zhang & Yanjun Zhang & Zimu Li & Qiuluan Chen & Jingjing Wang & Xiaohan Huang & Huan Liang & Huiran Zheng & Yichen Yao & X, 2024. "Antibodies utilizing VL6-57 light chains target a convergent cryptic epitope on SARS-CoV-2 spike protein and potentially drive the genesis of Omicron variants," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Xiao Xiao & Arthur Fridman & Lu Zhang & Pavlo Pristatsky & Eberhard Durr & Michael Minnier & Aimin Tang & Kara S. Cox & Zhiyun Wen & Renee Moore & Dongrui Tian & Jennifer D. Galli & Scott Cosmi & Mich, 2022. "Profiling of hMPV F-specific antibodies isolated from human memory B cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Yubin Liu & Ziyi Wang & Xinyu Zhuang & Shengnan Zhang & Zhicheng Chen & Yan Zou & Jie Sheng & Tianpeng Li & Wanbo Tai & Jinfang Yu & Yanqun Wang & Zhaoyong Zhang & Yunfeng Chen & Liangqin Tong & Xi Yu, 2023. "Inactivated vaccine-elicited potent antibodies can broadly neutralize SARS-CoV-2 circulating variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. Chengliang Lyu & Zhanlong He & Xiaoming Hu & Shuang Wang & Meng Qin & Li Zhu & Yanyan Li & Fengmei Yang & Zhouguang Jiao & Xiao Zhang & Guihong Lu & Erqiang Wang & Yaling Hu & Yu Zhai & Youchun Wang &, 2024. "Lysosomal “TRAP”: a neotype modality for clearance of viruses and variants," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    19. Xuanyu Nan & Yujie Li & Rui Zhang & Ruoke Wang & Niannian Lv & Jiayi Li & Yuanfang Chen & Bini Zhou & Yangjunqi Wang & Ziyi Wang & Jiayi Zhu & Jing Chen & Jinqian Li & Wenlong Chen & Qi Zhang & Xuanli, 2024. "Exploring distinct modes of inter-spike cross-linking for enhanced neutralization by SARS-CoV-2 antibodies," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Rebecca Urschel & Saskia Bronder & Verena Klemis & Stefanie Marx & Franziska Hielscher & Amina Abu-Omar & Candida Guckelmus & Sophie Schneitler & Christina Baum & Sören L. Becker & Barbara C. Gärtner , 2024. "SARS-CoV-2-specific cellular and humoral immunity after bivalent BA.4/5 COVID-19-vaccination in previously infected and non-infected individuals," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53082-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.