IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50659-5.html
   My bibliography  Save this article

Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer

Author

Listed:
  • Mark J. G. Bakkers

    (Janssen Vaccines & Prevention BV
    ForgeBio B.V.)

  • Tina Ritschel

    (Janssen Vaccines & Prevention BV
    J&J Innovative Medicine Technology, R&D)

  • Machteld Tiemessen

    (Janssen Vaccines & Prevention BV)

  • Jacobus Dijkman

    (Janssen Vaccines & Prevention BV
    University of Amsterdam
    University of Amsterdam)

  • Angelo A. Zuffianò

    (Janssen Vaccines & Prevention BV
    Promaton BV)

  • Xiaodi Yu

    (Janssen Research and Development)

  • Daan Overveld

    (Janssen Vaccines & Prevention BV)

  • Lam Le

    (Janssen Vaccines & Prevention BV)

  • Richard Voorzaat

    (Janssen Vaccines & Prevention BV)

  • Marlies M. Haaren

    (Janssen Vaccines & Prevention BV)

  • Martijn Man

    (Janssen Vaccines & Prevention BV)

  • Sem Tamara

    (Janssen Vaccines & Prevention BV)

  • Leslie Fits

    (Janssen Vaccines & Prevention BV)

  • Roland Zahn

    (Janssen Vaccines & Prevention BV)

  • Jarek Juraszek

    (Janssen Vaccines & Prevention BV)

  • Johannes P. M. Langedijk

    (Janssen Vaccines & Prevention BV
    ForgeBio B.V.)

Abstract

The prefusion conformation of human metapneumovirus fusion protein (hMPV Pre-F) is critical for eliciting the most potent neutralizing antibodies and is the preferred immunogen for an efficacious vaccine against hMPV respiratory infections. Here we show that an additional cleavage event in the F protein allows closure and correct folding of the trimer. We therefore engineered the F protein to undergo double cleavage, which enabled screening for Pre-F stabilizing substitutions at the natively folded protomer interfaces. To identify these substitutions, we developed an AI convolutional classifier that successfully predicts complex polar interactions often overlooked by physics-based methods and visual inspection. The combination of additional processing, stabilization of interface regions and stabilization of the membrane-proximal stem, resulted in a Pre-F protein vaccine candidate without the need for a heterologous trimerization domain that exhibited high expression yields and thermostability. Cryo-EM analysis shows the complete ectodomain structure, including the stem, and a specific interaction of the newly identified cleaved C-terminus with the adjacent protomer. Importantly, the protein induces high and cross-neutralizing antibody responses resulting in near complete protection against hMPV challenge in cotton rats, making the highly stable, double-cleaved hMPV Pre-F trimer an attractive vaccine candidate.

Suggested Citation

  • Mark J. G. Bakkers & Tina Ritschel & Machteld Tiemessen & Jacobus Dijkman & Angelo A. Zuffianò & Xiaodi Yu & Daan Overveld & Lam Le & Richard Voorzaat & Marlies M. Haaren & Martijn Man & Sem Tamara & , 2024. "Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50659-5
    DOI: 10.1038/s41467-024-50659-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50659-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50659-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ching-Lin Hsieh & Scott A. Rush & Concepcion Palomo & Chia-Wei Chou & Whitney Pickens & Vicente Más & Jason S. McLellan, 2022. "Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Hongyuan Lu & Daniel J. Diaz & Natalie J. Czarnecki & Congzhi Zhu & Wantae Kim & Raghav Shroff & Daniel J. Acosta & Bradley R. Alexander & Hannah O. Cole & Yan Zhang & Nathaniel A. Lynd & Andrew D. El, 2022. "Machine learning-aided engineering of hydrolases for PET depolymerization," Nature, Nature, vol. 604(7907), pages 662-667, April.
    3. Davide Corti & Siro Bianchi & Fabrizia Vanzetta & Andrea Minola & Laurent Perez & Gloria Agatic & Barbara Guarino & Chiara Silacci & Jessica Marcandalli & Benjamin J. Marsland & Antonio Piralla & Elen, 2013. "Cross-neutralization of four paramyxoviruses by a human monoclonal antibody," Nature, Nature, vol. 501(7467), pages 439-443, September.
    4. Michael B. Battles & Vicente Más & Eduardo Olmedillas & Olga Cano & Mónica Vázquez & Laura Rodríguez & José A. Melero & Jason S. McLellan, 2017. "Structure and immunogenicity of pre-fusion-stabilized human metapneumovirus F glycoprotein," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    5. Anders Krarup & Daphné Truan & Polina Furmanova-Hollenstein & Lies Bogaert & Pascale Bouchier & Ilona J. M. Bisschop & Myra N. Widjojoatmodjo & Roland Zahn & Hanneke Schuitemaker & Jason S. McLellan &, 2015. "A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karen J. Gonzalez & Jiachen Huang & Miria F. Criado & Avik Banerjee & Stephen M. Tompkins & Jarrod J. Mousa & Eva-Maria Strauch, 2024. "A general computational design strategy for stabilizing viral class I fusion proteins," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Xiao Xiao & Arthur Fridman & Lu Zhang & Pavlo Pristatsky & Eberhard Durr & Michael Minnier & Aimin Tang & Kara S. Cox & Zhiyun Wen & Renee Moore & Dongrui Tian & Jennifer D. Galli & Scott Cosmi & Mich, 2022. "Profiling of hMPV F-specific antibodies isolated from human memory B cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Ching-Lin Hsieh & Scott A. Rush & Concepcion Palomo & Chia-Wei Chou & Whitney Pickens & Vicente Más & Jason S. McLellan, 2022. "Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Madelyn Cabán & Justas V. Rodarte & Madeleine Bibby & Matthew D. Gray & Justin J. Taylor & Marie Pancera & Jim Boonyaratanakornkit, 2023. "Cross-protective antibodies against common endemic respiratory viruses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Johannes P. M. Langedijk & Freek Cox & Nicole V. Johnson & Daan Overveld & Lam Le & Ward Hoogen & Richard Voorzaat & Roland Zahn & Leslie Fits & Jarek Juraszek & Jason S. McLellan & Mark J. G. Bakkers, 2024. "Universal paramyxovirus vaccine design by stabilizing regions involved in structural transformation of the fusion protein," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Daniel J. Diaz & Chengyue Gong & Jeffrey Ouyang-Zhang & James M. Loy & Jordan Wells & David Yang & Andrew D. Ellington & Alexandros G. Dimakis & Adam R. Klivans, 2024. "Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Aneesh Vijayan & Ronald Vogels & Rachel Groppo & Yi Jin & Selina Khan & Mirjam Kampen & Sytze Jorritsma & Satish Boedhoe & Miranda Baert & Harry Diepen & Harmjan Kuipers & Jan Serroyen & Jorge Reyes- , 2024. "A self-amplifying RNA RSV prefusion-F vaccine elicits potent immunity in pre-exposed and naïve non-human primates," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Ching-Lin Hsieh & Sarah R. Leist & Emily Happy Miller & Ling Zhou & John M. Powers & Alexandra L. Tse & Albert Wang & Ande West & Mark R. Zweigart & Jonathan C. Schisler & Rohit K. Jangra & Kartik Cha, 2024. "Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Tara C. Marcink & Gillian Zipursky & Elizabeth B. Sobolik & Kate Golub & Emily Herman & Kyle Stearns & Alexander L. Greninger & Matteo Porotto & Anne Moscona, 2024. "How a paramyxovirus fusion/entry complex adapts to escape a neutralizing antibody," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Xinlei Wei & Xue Yang & Congcong Hu & Qiangzi Li & Qianqian Liu & Yue Wu & Leipeng Xie & Xiao Ning & Fei Li & Tao Cai & Zhiguang Zhu & Yi-Heng P. Job Zhang & Yanfei Zhang & Xuejun Chen & Chun You, 2024. "ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Momei Zhou & Benjamin Vollmer & Emily Machala & Muyuan Chen & Kay Grünewald & Ann M. Arvin & Wah Chiu & Stefan L. Oliver, 2023. "Targeted mutagenesis of the herpesvirus fusogen central helix captures transition states," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Youying Mu & Chengzhuo Duan & Xin Li & Yongbo Wu, 2023. "A Monitoring Method for Corporate Environmental Performance Based on Data Fusion in China under the Double Carbon Target," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    13. Javier M. Hernández-Sancho & Arnaud Boudigou & Maria V. G. Alván-Vargas & Dekel Freund & Jenny Arnling Bååth & Peter Westh & Kenneth Jensen & Lianet Noda-García & Daniel C. Volke & Pablo I. Nikel, 2024. "A versatile microbial platform as a tunable whole-cell chemical sensor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. P. Konstantin Richter & Paula Blázquez-Sánchez & Ziyue Zhao & Felipe Engelberger & Christian Wiebeler & Georg Künze & Ronny Frank & Dana Krinke & Emanuele Frezzotti & Yuliia Lihanova & Patricia Falken, 2023. "Structure and function of the metagenomic plastic-degrading polyester hydrolase PHL7 bound to its product," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Yinglu Cui & Yanchun Chen & Jinyuan Sun & Tong Zhu & Hua Pang & Chunli Li & Wen-Chao Geng & Bian Wu, 2024. "Computational redesign of a hydrolase for nearly complete PET depolymerization at industrially relevant high-solids loading," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Ruipeng Lei & Timothy J. C. Tan & Andrea Hernandez Garcia & Yiquan Wang & Meghan Diefenbacher & Chuyun Teo & Gopika Gopan & Zahra Tavakoli Dargani & Qi Wen Teo & Claire S. Graham & Christopher B. Broo, 2022. "Prevalence and mechanisms of evolutionary contingency in human influenza H3N2 neuraminidase," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Teng Bao & Yuanchao Qian & Yongping Xin & James J. Collins & Ting Lu, 2023. "Engineering microbial division of labor for plastic upcycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Hwaseok Hong & Dongwoo Ki & Hogyun Seo & Jiyoung Park & Jaewon Jang & Kyung-Jin Kim, 2023. "Discovery and rational engineering of PET hydrolase with both mesophilic and thermophilic PET hydrolase properties," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Amelia R. Bergeson & Ashli J. Silvera & Hal S. Alper, 2024. "Bottlenecks in biobased approaches to plastic degradation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50659-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.