IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53052-4.html
   My bibliography  Save this article

Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials

Author

Listed:
  • Avinash Manjula-Basavanna

    (Northeastern University
    Virginia Polytechnic Institute and State University
    Northeastern University)

  • Anna M. Duraj-Thatte

    (Virginia Polytechnic Institute and State University)

  • Neel S. Joshi

    (Northeastern University)

Abstract

Advanced design strategies are essential to realize the full potential of engineered living materials, including their biodegradability, manufacturability, sustainability, and ability to tailor functional properties. Toward these goals, we present mechanically engineered living material with compostability, healability, and scalability – a material that integrates these features in the form of a stretchable plastic that is simultaneously flushable, compostable, and exhibits the characteristics of paper. This plastic/paper-like material is produced in scalable quantities (0.5–1 g L−1), directly from cultured bacterial biomass (40%) containing engineered curli protein nanofibers. The elongation at break (1–160%) and Young’s modulus (6-450 MPa) is tuned to more than two orders of magnitude. By genetically encoded covalent crosslinking of curli nanofibers, we increase the Young’s modulus by two times. The designed engineered living materials biodegrade completely in 15–75 days, while its mechanical properties are comparable to petrochemical plastics and thus may find use as compostable materials for primary packaging.

Suggested Citation

  • Avinash Manjula-Basavanna & Anna M. Duraj-Thatte & Neel S. Joshi, 2024. "Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53052-4
    DOI: 10.1038/s41467-024-53052-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53052-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53052-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joaquin Caro-Astorga & Kenneth T. Walker & Natalia Herrera & Koon-Yang Lee & Tom Ellis, 2021. "Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Sara Molinari & Robert F. Tesoriero & Dong Li & Swetha Sridhar & Rong Cai & Jayashree Soman & Kathleen R. Ryan & Paul D. Ashby & Caroline M. Ajo-Franklin, 2022. "A de novo matrix for macroscopic living materials from bacteria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Emily Elhacham & Liad Ben-Uri & Jonathan Grozovski & Yinon M. Bar-On & Ron Milo, 2020. "Global human-made mass exceeds all living biomass," Nature, Nature, vol. 588(7838), pages 442-444, December.
    4. Peter Q. Nguyen & Zsofia Botyanszki & Pei Kun R. Tay & Neel S. Joshi, 2014. "Programmable biofilm-based materials from engineered curli nanofibres," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    5. Sun-Young Kang & Anaya Pokhrel & Sara Bratsch & Joey J. Benson & Seung-Oh Seo & Maureen B. Quin & Alptekin Aksan & Claudia Schmidt-Dannert, 2021. "Engineering Bacillus subtilis for the formation of a durable living biocomposite material," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    6. Justus Wesseler & Joachim von Braun, 2017. "Measuring the Bioeconomy: Economics and Policies," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 275-298, October.
    7. Anna M. Duraj-Thatte & Avinash Manjula-Basavanna & Jarod Rutledge & Jing Xia & Shabir Hassan & Arjirios Sourlis & Andrés G. Rubio & Ami Lesha & Michael Zenkl & Anton Kan & David A. Weitz & Yu Shrike Z, 2021. "Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    8. Justus Wesseler & Joachim von Braun, 2017. "Measuring the Bioeconomy: Economics and Policies," Annual Review of Resource Economics, Annual Reviews, vol. 9(1), pages 275-298, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Smith & Justus H. H. Wesseler & David Zilberman, 2021. "New Plant Breeding Technologies: An Assessment of the Political Economy of the Regulatory Environment and Implications for Sustainability," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    2. Kutay Cingiz & Hugo Gonzalez‐Hermosa & Wim Heijman & Justus H. H. Wesseler, 2023. "Measurement of the EU Bioeconomy and the Inclusion of Downstream and Upstream Linkages," EuroChoices, The Agricultural Economics Society, vol. 22(3), pages 26-27, December.
    3. Mauricio Alviar & Andrés García-Suaza & Laura Ramírez-Gómez & Simón Villegas-Velásquez, 2021. "Measuring the Contribution of the Bioeconomy: The Case of Colombia and Antioquia," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    4. Wiebke Jander & Sven Wydra & Johann Wackerbauer & Philipp Grundmann & Stephan Piotrowski, 2020. "Monitoring Bioeconomy Transitions with Economic–Environmental and Innovation Indicators: Addressing Data Gaps in the Short Term," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    5. Maximilian Kardung & Kutay Cingiz & Ortwin Costenoble & Roel Delahaye & Wim Heijman & Marko Lovrić & Myrna van Leeuwen & Robert M’Barek & Hans van Meijl & Stephan Piotrowski & Tévécia Ronzon & Johanne, 2021. "Development of the Circular Bioeconomy: Drivers and Indicators," Sustainability, MDPI, vol. 13(1), pages 1-24, January.
    6. repec:caa:jnlage:v:preprint:id:195-2023-agricecon is not listed on IDEAS
    7. George B. Frisvold & Steven M. Moss & Andrea Hodgson & Mary E. Maxon, 2021. "Understanding the U.S. Bioeconomy: A New Definition and Landscape," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    8. Walther Zeug & Alberto Bezama & Urs Moesenfechtel & Anne Jähkel & Daniela Thrän, 2019. "Stakeholders’ Interests and Perceptions of Bioeconomy Monitoring Using a Sustainable Development Goal Framework," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    9. Zeug, Walther & Bezama, Alberto & Thrän, Daniela, 2020. "Towards a holistic and integrated Life Cycle Sustainability Assessment of the bioeconomy: Background on concepts, visions and measurements," UFZ Discussion Papers 7/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Leonard Prochaska & Daniel Schiller, 2021. "An evolutionary perspective on the emergence and implementation of mission-oriented innovation policy: the example of the change of the leitmotif from biotechnology to bioeconomy," Review of Evolutionary Political Economy, Springer, vol. 2(1), pages 141-249, April.
    11. Kumeh, Eric Mensah & Kyereh, Boateng & Birkenberg, Athena & Birner, Regina, 2021. "Customary power, farmer strategies and the dynamics of access to protected forestlands for farming: Implications for Ghana's forest bioeconomy," Forest Policy and Economics, Elsevier, vol. 133(C).
    12. Wen, Lanjiao & Chatalova, Lioudmila, 2021. "Will transaction costs and economies of scale tip the balance in farm size in industrial agriculture? An illustration for non-food biomass production in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 13(2).
    13. Sun-Young Kang & Anaya Pokhrel & Sara Bratsch & Joey J. Benson & Seung-Oh Seo & Maureen B. Quin & Alptekin Aksan & Claudia Schmidt-Dannert, 2021. "Engineering Bacillus subtilis for the formation of a durable living biocomposite material," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    14. Kardung, Maximilian & Drabik, Dušan, 2021. "Full speed ahead or floating around? Dynamics of selected circular bioeconomies in Europe," Ecological Economics, Elsevier, vol. 188(C).
    15. Andrew M. Neill & Cathal O’Donoghue & Jane C. Stout, 2020. "A Natural Capital Lens for a Sustainable Bioeconomy: Determining the Unrealised and Unrecognised Services from Nature," Sustainability, MDPI, vol. 12(19), pages 1-24, September.
    16. Maciejczak, Mariusz, 2023. "Nature Based Innovations in the Development of Bioeconomy," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2023(2).
    17. Davide Viaggi & Matteo Zavalloni, 2021. "Bioeconomy and Circular Economy: Implications for Economic Evaluation in the Post-COVID Era," Circular Economy and Sustainability, Springer, vol. 1(4), pages 1257-1269, December.
    18. Tévécia Ronzon & Susanne Iost & George Philippidis, 2022. "Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8195-8217, June.
    19. Lanjiao Wen & Lioudmila Chatalova, 2021. "Will Transaction Costs and Economies of Scale Tip the Balance in Farm Size in Industrial Agriculture? An Illustration for Non-Food Biomass Production in Germany," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    20. D'Amato, D. & Korhonen, J., 2021. "Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework," Ecological Economics, Elsevier, vol. 188(C).
    21. Watanabe, Chihiro & Naveed, Nasir & Neittaanmäki, Pekka, 2018. "Digital solutions transform the forest-based bioeconomy into a digital platform industry - A suggestion for a disruptive business model in the digital economy," Technology in Society, Elsevier, vol. 54(C), pages 168-188.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53052-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.