IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25350-8.html
   My bibliography  Save this article

Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration

Author

Listed:
  • Joaquin Caro-Astorga

    (Imperial College London
    Imperial College London)

  • Kenneth T. Walker

    (Imperial College London
    Imperial College London)

  • Natalia Herrera

    (Imperial College London)

  • Koon-Yang Lee

    (Imperial College London)

  • Tom Ellis

    (Imperial College London
    Imperial College London)

Abstract

Engineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.

Suggested Citation

  • Joaquin Caro-Astorga & Kenneth T. Walker & Natalia Herrera & Koon-Yang Lee & Tom Ellis, 2021. "Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25350-8
    DOI: 10.1038/s41467-021-25350-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25350-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25350-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Avinash Manjula-Basavanna & Anna M. Duraj-Thatte & Neel S. Joshi, 2024. "Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Alex J. H. Fedorec & Neythen J. Treloar & Ke Yan Wen & Linda Dekker & Qing Hsuan Ong & Gabija Jurkeviciute & Enbo Lyu & Jack W. Rutter & Kathleen J. Y. Zhang & Luca Rosa & Alexey Zaikin & Chris P. Bar, 2024. "Emergent digital bio-computation through spatial diffusion and engineered bacteria," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Sun-Young Kang & Anaya Pokhrel & Sara Bratsch & Joey J. Benson & Seung-Oh Seo & Maureen B. Quin & Alptekin Aksan & Claudia Schmidt-Dannert, 2021. "Engineering Bacillus subtilis for the formation of a durable living biocomposite material," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25350-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.