IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52685-9.html
   My bibliography  Save this article

Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins

Author

Listed:
  • Yaxian Zhou

    (University of Wisconsin-Madison)

  • Chunrong Li

    (University of Wisconsin-Madison)

  • Xuankun Chen

    (University of Wisconsin-Madison)

  • Yuan Zhao

    (University of Wisconsin-Madison)

  • Yaxian Liao

    (University of Wisconsin-Madison)

  • Penghsuan Huang

    (University of Wisconsin-Madison)

  • Wenxin Wu

    (University of Wisconsin-Madison)

  • Nicholas S. Nieto

    (University of Wisconsin-Madison)

  • Lingjun Li

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

  • Weiping Tang

    (University of Wisconsin-Madison
    University of Wisconsin-Madison)

Abstract

Targeted protein degradation has emerged as a novel therapeutic modality to treat human diseases by utilizing the cell’s own disposal systems to remove protein target. Significant clinical benefits have been observed for degrading many intracellular proteins. Recently, the degradation of extracellular proteins in the lysosome has been developed. However, there have been limited successes in selectively degrading protein targets in disease-relevant cells or tissues, which would greatly enhance the development of precision medicine. Additionally, most degraders are not readily available due to their complexity. We report a class of easily accessible Folate Receptor TArgeting Chimeras (FRTACs) to recruit the folate receptor, primarily expressed on malignant cells, to degrade extracellular soluble and membrane cancer-related proteins in vitro and in vivo. Our results indicate that FRTAC is a general platform for developing more precise and effective chemical probes and therapeutics for the study and treatment of cancers.

Suggested Citation

  • Yaxian Zhou & Chunrong Li & Xuankun Chen & Yuan Zhao & Yaxian Liao & Penghsuan Huang & Wenxin Wu & Nicholas S. Nieto & Lingjun Li & Weiping Tang, 2024. "Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52685-9
    DOI: 10.1038/s41467-024-52685-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52685-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52685-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingming Zhang & Anastasia Rakhimbekova & Xiaojiang Duan & Qingqing Yin & Catherine A. Foss & Yan Fan & Yangyang Xu & Xuesong Li & Xuekang Cai & Zsofia Kutil & Pengyuan Wang & Zhi Yang & Ning Zhang & , 2021. "A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Steven M. Banik & Kayvon Pedram & Simon Wisnovsky & Green Ahn & Nicholas M. Riley & Carolyn R. Bertozzi, 2020. "Lysosome-targeting chimaeras for degradation of extracellular proteins," Nature, Nature, vol. 584(7820), pages 291-297, August.
    3. Chen Chen & Jiyuan Ke & X. Edward Zhou & Wei Yi & Joseph S. Brunzelle & Jun Li & Eu-Leong Yong & H. Eric Xu & Karsten Melcher, 2013. "Structural basis for molecular recognition of folic acid by folate receptors," Nature, Nature, vol. 500(7463), pages 486-489, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Olga A. Balashova & Alexios A. Panoutsopoulos & Olesya Visina & Jacob Selhub & Paul S. Knoepfler & Laura N. Borodinsky, 2024. "Noncanonical function of folate through folate receptor 1 during neural tube formation," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Harim I. Won & Samuel Zinga & Olga Kandror & Tatos Akopian & Ian D. Wolf & Jessica T. P. Schweber & Ernst W. Schmid & Michael C. Chao & Maya Waldor & Eric J. Rubin & Junhao Zhu, 2024. "Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Samuel C. Griffiths & Rebekka A. Schwab & Kamel El Omari & Benjamin Bishop & Ellen J. Iverson & Tomas Malinauskas & Ramin Dubey & Mingxing Qian & Douglas F. Covey & Robert J. C. Gilbert & Rajat Rohatg, 2021. "Hedgehog-Interacting Protein is a multimodal antagonist of Hedgehog signalling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Jing Gao & Bo Hou & Qiwen Zhu & Lei Yang & Xingyu Jiang & Zhifeng Zou & Xutong Li & Tianfeng Xu & Mingyue Zheng & Yi-Hung Chen & Zhiai Xu & Huixiong Xu & Haijun Yu, 2022. "Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Chang Hoon Ji & Hee Yeon Kim & Min Ju Lee & Ah Jung Heo & Daniel Youngjae Park & Sungsu Lim & Seulgi Shin & Srinivasrao Ganipisetti & Woo Seung Yang & Chang An Jung & Kun Young Kim & Eun Hye Jeong & S, 2022. "The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Qian Wang & Xingyue Yang & Ruixin Yuan & Ao Shen & Pushu Wang & Haoting Li & Jun Zhang & Chao Tian & Zhujun Jiang & Wenzhe Li & Suwei Dong, 2024. "A co-assembly platform engaging macrophage scavenger receptor A for lysosome-targeting protein degradation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Jean M. Etersque & Iris K. Lee & Nitika Sharma & Kexiang Xu & Andrew Ruff & Justin D. Northrup & Swarbhanu Sarkar & Tommy Nguyen & Richard Lauman & George M. Burslem & Mark A. Sellmyer, 2023. "Regulation of eDHFR-tagged proteins with trimethoprim PROTACs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Maik Müller & Fabienne Gräbnitz & Niculò Barandun & Yang Shen & Fabian Wendt & Sebastian N. Steiner & Yannik Severin & Stefan U. Vetterli & Milon Mondal & James R. Prudent & Raphael Hofmann & Marc Oos, 2021. "Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    10. Shasha Yao & Yi Wang & Qian Tang & Yujie Yin & Yu Geng & Lei Xu & Shifu Liang & Jiajia Xiang & Jiaqi Fan & Jianbin Tang & Jian Liu & Shiqun Shao & Youqing Shen, 2024. "A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zachary R. Crook & Gregory P. Sevilla & Pamela Young & Emily J. Girard & Tinh-Doan Phi & Monique L. Howard & Jason Price & James M. Olson & Natalie W. Nairn, 2024. "CYpHER: catalytic extracellular targeted protein degradation with high potency and durable effect," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Dan Liu & Jin Yan & Fang Ma & Jingmei Wang & Siqi Yan & Wangxiao He, 2024. "Reinvigoration of cytotoxic T lymphocytes in microsatellite instability-high colon adenocarcinoma through lysosomal degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Lukas Junk & Volker M. Schmiedel & Somraj Guha & Katharina Fischel & Peter Greb & Kristin Vill & Violetta Krisilia & Lasse Geelen & Klaus Rumpel & Parvinder Kaur & Ramya V. Krishnamurthy & Shridhar Na, 2024. "Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52685-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.