IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51720-z.html
   My bibliography  Save this article

A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles

Author

Listed:
  • Shasha Yao

    (Zhejiang University
    Zhejiang University)

  • Yi Wang

    (Zhejiang University
    Zhejiang University)

  • Qian Tang

    (Zhejiang University
    The University of Edinburgh)

  • Yujie Yin

    (Zhejiang University
    Zhejiang University)

  • Yu Geng

    (The Fourth Affiliated Hospital Zhejiang University School of Medicine)

  • Lei Xu

    (The Fourth Affiliated Hospital Zhejiang University School of Medicine)

  • Shifu Liang

    (Zhejiang University
    Zhejiang University)

  • Jiajia Xiang

    (Zhejiang University)

  • Jiaqi Fan

    (Zhejiang University
    Zhejiang University)

  • Jianbin Tang

    (Zhejiang University
    Zhejiang University)

  • Jian Liu

    (Zhejiang University
    The University of Edinburgh
    Biomedical and Heath Translational Research Center of Zhejiang Province)

  • Shiqun Shao

    (Zhejiang University
    Zhejiang University)

  • Youqing Shen

    (Zhejiang University)

Abstract

Existing strategies use bifunctional chimaeras to mediate extracellular protein degradation. However, these strategies rely on specific lysosome-trafficking receptors to facilitate lysosomal delivery, which may raise resistance concerns due to intrinsic cell-to-cell variation in receptor expression and mutations or downregulation of the receptors. Another challenge is establishing a universal platform applicable in multiple scenarios. Here, we develop MONOTAB (MOdified NanOparticle with TArgeting Binders), a plug-and-play monofunctional degradation platform that can drag extracellular targets into lysosomes for degradation. MONOTAB harnesses the inherent lysosome-targeting ability of certain nanoparticles to obviate specific receptor dependency and the hook effect. To achieve high modularity and programmable target specificity, we utilize the streptavidin-biotin interaction to immobilize antibodies or other targeting molecules on nanoparticles, through an antibody mounting approach or by direct binding. Our study reveals that MONOTAB can induce efficient degradation of diverse therapeutic targets, including membrane proteins, secreted proteins, and even extracellular vesicles.

Suggested Citation

  • Shasha Yao & Yi Wang & Qian Tang & Yujie Yin & Yu Geng & Lei Xu & Shifu Liang & Jiajia Xiang & Jiaqi Fan & Jianbin Tang & Jian Liu & Shiqun Shao & Youqing Shen, 2024. "A plug-and-play monofunctional platform for targeted degradation of extracellular proteins and vesicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51720-z
    DOI: 10.1038/s41467-024-51720-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51720-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51720-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ryan P. Wurz & Huan Rui & Ken Dellamaggiore & Sudipa Ghimire-Rijal & Kaylee Choi & Kate Smither & Albert Amegadzie & Ning Chen & Xiaofen Li & Abhisek Banerjee & Qing Chen & Dane Mohl & Amit Vaish, 2023. "Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Hadir Marei & Wen-Ting K. Tsai & Yee-Seir Kee & Karen Ruiz & Jieyan He & Chris Cox & Tao Sun & Sai Penikalapati & Pankaj Dwivedi & Meena Choi & David Kan & Pablo Saenz-Lopez & Kristel Dorighi & Pamela, 2022. "Antibody targeting of E3 ubiquitin ligases for receptor degradation," Nature, Nature, vol. 610(7930), pages 182-189, October.
    3. Jose L. Orgaz & Pahini Pandya & Rimple Dalmeida & Panagiotis Karagiannis & Berta Sanchez-Laorden & Amaya Viros & Jean Albrengues & Frank O. Nestle & Anne J. Ridley & Cedric Gaggioli & Richard Marais &, 2014. "Diverse matrix metalloproteinase functions regulate cancer amoeboid migration," Nature Communications, Nature, vol. 5(1), pages 1-13, September.
    4. Steven M. Banik & Kayvon Pedram & Simon Wisnovsky & Green Ahn & Nicholas M. Riley & Carolyn R. Bertozzi, 2020. "Lysosome-targeting chimaeras for degradation of extracellular proteins," Nature, Nature, vol. 584(7820), pages 291-297, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Alena Kroupova & Valentina A. Spiteri & Zoe J. Rutter & Hirotake Furihata & Darren Darren & Sarath Ramachandran & Sohini Chakraborti & Kevin Haubrich & Julie Pethe & Denzel Gonzales & Andre J. Wijaya , 2024. "Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Harim I. Won & Samuel Zinga & Olga Kandror & Tatos Akopian & Ian D. Wolf & Jessica T. P. Schweber & Ernst W. Schmid & Michael C. Chao & Maya Waldor & Eric J. Rubin & Junhao Zhu, 2024. "Targeted protein degradation in mycobacteria uncovers antibacterial effects and potentiates antibiotic efficacy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Daniel C. Scott & Suresh Dharuman & Elizabeth Griffith & Sergio C. Chai & Jarrid Ronnebaum & Moeko T. King & Rajendra Tangallapally & Chan Lee & Clifford T. Gee & Lei Yang & Yong Li & Victoria C. Loud, 2024. "Principles of paralog-specific targeted protein degradation engaging the C-degron E3 KLHDC2," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Yuan Liu & Jingwen Yang & Tianlu Wang & Mei Luo & Yamei Chen & Chengxuan Chen & Ze’ev Ronai & Yubin Zhou & Eytan Ruppin & Leng Han, 2023. "Expanding PROTACtable genome universe of E3 ligases," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Yaxian Zhou & Chunrong Li & Xuankun Chen & Yuan Zhao & Yaxian Liao & Penghsuan Huang & Wenxin Wu & Nicholas S. Nieto & Lingjun Li & Weiping Tang, 2024. "Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Jing Gao & Bo Hou & Qiwen Zhu & Lei Yang & Xingyu Jiang & Zhifeng Zou & Xutong Li & Tianfeng Xu & Mingyue Zheng & Yi-Hung Chen & Zhiai Xu & Huixiong Xu & Haijun Yu, 2022. "Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Chang Hoon Ji & Hee Yeon Kim & Min Ju Lee & Ah Jung Heo & Daniel Youngjae Park & Sungsu Lim & Seulgi Shin & Srinivasrao Ganipisetti & Woo Seung Yang & Chang An Jung & Kun Young Kim & Eun Hye Jeong & S, 2022. "The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Qian Wang & Xingyue Yang & Ruixin Yuan & Ao Shen & Pushu Wang & Haoting Li & Jun Zhang & Chao Tian & Zhujun Jiang & Wenzhe Li & Suwei Dong, 2024. "A co-assembly platform engaging macrophage scavenger receptor A for lysosome-targeting protein degradation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Jean M. Etersque & Iris K. Lee & Nitika Sharma & Kexiang Xu & Andrew Ruff & Justin D. Northrup & Swarbhanu Sarkar & Tommy Nguyen & Richard Lauman & George M. Burslem & Mark A. Sellmyer, 2023. "Regulation of eDHFR-tagged proteins with trimethoprim PROTACs," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Maik Müller & Fabienne Gräbnitz & Niculò Barandun & Yang Shen & Fabian Wendt & Sebastian N. Steiner & Yannik Severin & Stefan U. Vetterli & Milon Mondal & James R. Prudent & Raphael Hofmann & Marc Oos, 2021. "Light-mediated discovery of surfaceome nanoscale organization and intercellular receptor interaction networks," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    12. Zachary R. Crook & Gregory P. Sevilla & Pamela Young & Emily J. Girard & Tinh-Doan Phi & Monique L. Howard & Jason Price & James M. Olson & Natalie W. Nairn, 2024. "CYpHER: catalytic extracellular targeted protein degradation with high potency and durable effect," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Dan Liu & Jin Yan & Fang Ma & Jingmei Wang & Siqi Yan & Wangxiao He, 2024. "Reinvigoration of cytotoxic T lymphocytes in microsatellite instability-high colon adenocarcinoma through lysosomal degradation of PD-L1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Lukas Junk & Volker M. Schmiedel & Somraj Guha & Katharina Fischel & Peter Greb & Kristin Vill & Violetta Krisilia & Lasse Geelen & Klaus Rumpel & Parvinder Kaur & Ramya V. Krishnamurthy & Shridhar Na, 2024. "Homo-BacPROTAC-induced degradation of ClpC1 as a strategy against drug-resistant mycobacteria," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Eva Crosas-Molist & Vittoria Graziani & Oscar Maiques & Pahini Pandya & Joanne Monger & Remi Samain & Samantha L. George & Saba Malik & Jerrine Salise & Valle Morales & Adrien Le Guennec & R. Andrew A, 2023. "AMPK is a mechano-metabolic sensor linking cell adhesion and mitochondrial dynamics to Myosin-dependent cell migration," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51720-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.