IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52574-1.html
   My bibliography  Save this article

Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold

Author

Listed:
  • Ádám Levente Póti

    (Research Centre for Natural Sciences
    Eötvös Loránd University)

  • Dániel Bálint

    (Research Centre for Natural Sciences
    Eötvös Loránd University)

  • Anita Alexa

    (Research Centre for Natural Sciences)

  • Péter Sok

    (Research Centre for Natural Sciences)

  • Kristóf Ozsváth

    (Research Centre for Natural Sciences)

  • Krisztián Albert

    (Research Centre for Natural Sciences)

  • Gábor Turczel

    (Research Centre for Natural Sciences)

  • Sarolt Magyari

    (Research Centre for Natural Sciences)

  • Orsolya Ember

    (Research Centre for Natural Sciences)

  • Kinga Papp

    (Research Centre for Natural Sciences)

  • Sándor Balázs Király

    (University of Debrecen)

  • Tímea Imre

    (Research Centre for Natural Sciences)

  • Krisztina Németh

    (Research Centre for Natural Sciences)

  • Tibor Kurtán

    (University of Debrecen)

  • Gergő Gógl

    (Research Centre for Natural Sciences)

  • Szilárd Varga

    (Research Centre for Natural Sciences)

  • Tibor Soós

    (Research Centre for Natural Sciences)

  • Attila Reményi

    (Research Centre for Natural Sciences)

Abstract

For mitogen-activated protein kinases (MAPKs) a shallow surface—distinct from the substrate binding pocket—called the D(ocking)-groove governs partner protein binding. Screening of broad range of Michael acceptor compounds identified a double-activated, sterically crowded cyclohexenone moiety as a promising scaffold. We show that compounds bearing this structurally complex chiral warhead are able to target the conserved MAPK D-groove cysteine via reversible covalent modification and interfere with the protein-protein interactions of MAPKs. The electronic and steric properties of the Michael acceptor can be tailored via different substitution patterns. The inversion of the chiral center of the warhead can reroute chemical bond formation with the targeted cysteine towards the neighboring, but less nucleophilic histidine. Compounds bind to the shallow MAPK D-groove with low micromolar affinity in vitro and perturb MAPK signaling networks in the cell. This class of chiral, cyclic and enhanced 3D shaped Michael acceptor scaffolds offers an alternative to conventional ATP-competitive drugs modulating MAPK signaling pathways.

Suggested Citation

  • Ádám Levente Póti & Dániel Bálint & Anita Alexa & Péter Sok & Kristóf Ozsváth & Krisztián Albert & Gábor Turczel & Sarolt Magyari & Orsolya Ember & Kinga Papp & Sándor Balázs Király & Tímea Imre & Kri, 2024. "Targeting a key protein-protein interaction surface on mitogen-activated protein kinases by a precision-guided warhead scaffold," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52574-1
    DOI: 10.1038/s41467-024-52574-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52574-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52574-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keriann M. Backus & Bruno E. Correia & Kenneth M. Lum & Stefano Forli & Benjamin D. Horning & Gonzalo E. González-Páez & Sandip Chatterjee & Bryan R. Lanning & John R. Teijaro & Arthur J. Olson & Denn, 2016. "Proteome-wide covalent ligand discovery in native biological systems," Nature, Nature, vol. 534(7608), pages 570-574, June.
    2. Nicholas Kwiatkowski & Tinghu Zhang & Peter B. Rahl & Brian J. Abraham & Jessica Reddy & Scott B. Ficarro & Anahita Dastur & Arnaud Amzallag & Sridhar Ramaswamy & Bethany Tesar & Catherine E. Jenkins , 2014. "Targeting transcription regulation in cancer with a covalent CDK7 inhibitor," Nature, Nature, vol. 511(7511), pages 616-620, July.
    3. Tamer S. Kaoud & William H. Johnson & Nancy D. Ebelt & Andrea Piserchio & Diana Zamora-Olivares & Sabrina X. Ravenstein & Jacey R. Pridgen & Ramakrishna Edupuganti & Rachel Sammons & Micael Cano & Man, 2019. "Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Austin Hsu & Qiming Duan & Daniel S. Day & Xin Luo & Sarah McMahon & Yu Huang & Zachary B. Feldman & Zhen Jiang & Tinghu Zhang & Yanke Liang & Michael Alexanian & Arun Padmanabhan & Jonathan D. Brown , 2022. "Targeting transcription in heart failure via CDK7/12/13 inhibition," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Tin-Yan Koo & Hinyuk Lai & Daniel K. Nomura & Clive Yik-Sham Chung, 2023. "N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Thibault Houles & Geneviève Lavoie & Sami Nourreddine & Winnie Cheung & Éric Vaillancourt-Jean & Célia M. Guérin & Mathieu Bouttier & Benoit Grondin & Sichun Lin & Marc K. Saba-El-Leil & Stephane Ange, 2022. "CDK12 is hyperactivated and a synthetic-lethal target in BRAF-mutated melanoma," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Jayden Sterling & Jennifer R. Baker & Adam McCluskey & Lenka Munoz, 2023. "Systematic literature review reveals suboptimal use of chemical probes in cell-based biomedical research," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Jieqiong Zhang & Zhenhua Hu & Hwa Hwa Chung & Yun Tian & Kah Weng Lau & Zheng Ser & Yan Ting Lim & Radoslaw M. Sobota & Hwei Fen Leong & Benjamin Jieming Chen & Clarisse Jingyi Yeo & Shawn Ying Xuan T, 2023. "Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Barbara Steurer & Roel C. Janssens & Marit E. Geijer & Fernando Aprile-Garcia & Bart Geverts & Arjan F. Theil & Barbara Hummel & Martin E. Royen & Bastiaan Evers & René Bernards & Adriaan B. Houtsmull, 2022. "DNA damage-induced transcription stress triggers the genome-wide degradation of promoter-bound Pol II," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Andrew J. Heindel & Jeffrey W. Brulet & Xiantao Wang & Michael W. Founds & Adam H. Libby & Dina L. Bai & Michael C. Lemke & David M. Leace & Thurl E. Harris & Markus Hafner & Ku-Lung Hsu, 2023. "Chemoproteomic capture of RNA binding activity in living cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Chenlu Zhang & Chen Zhou & Assa Magassa & Xiaokang Jin & Deyu Fang & Xiaoyu Zhang, 2024. "A platform for mapping reactive cysteines within the immunopeptidome," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Anna Rodina & Chao Xu & Chander S. Digwal & Suhasini Joshi & Yogita Patel & Anand R. Santhaseela & Sadik Bay & Swathi Merugu & Aftab Alam & Pengrong Yan & Chenghua Yang & Tanaya Roychowdhury & Palak P, 2023. "Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation," Nature Communications, Nature, vol. 14(1), pages 1-26, December.
    10. Jing Gao & Bo Hou & Qiwen Zhu & Lei Yang & Xingyu Jiang & Zhifeng Zou & Xutong Li & Tianfeng Xu & Mingyue Zheng & Yi-Hung Chen & Zhiai Xu & Huixiong Xu & Haijun Yu, 2022. "Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Tengfei Wang & Shuxiang Shi & Yuanyuan Shi & Peipei Jiang & Ganlu Hu & Qinying Ye & Zhan Shi & Kexin Yu & Chenguang Wang & Guoping Fan & Suwen Zhao & Hanhui Ma & Alex C. Y. Chang & Zhi Li & Qian Bian , 2023. "Chemical-induced phase transition and global conformational reorganization of chromatin," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Victoria I. Cushing & Adrian F. Koh & Junjie Feng & Kaste Jurgaityte & Alexander Bondke & Sebastian H. B. Kroll & Marion Barbazanges & Bodo Scheiper & Ash K. Bahl & Anthony G. M. Barrett & Simak Ali &, 2024. "High-resolution cryo-EM of the human CDK-activating kinase for structure-based drug design," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Wai Cheung Chan & Xiaoxi Liu & Robert S. Magin & Nicholas M. Girardi & Scott B. Ficarro & Wanyi Hu & Maria I. Tarazona Guzman & Cara A. Starnbach & Alejandra Felix & Guillaume Adelmant & Anthony C. Va, 2023. "Accelerating inhibitor discovery for deubiquitinating enzymes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Heta Desai & Katrina H. Andrews & Kristina V. Bergersen & Samuel Ofori & Fengchao Yu & Flowreen Shikwana & Mark A. Arbing & Lisa M. Boatner & Miranda Villanueva & Nicholas Ung & Elaine F. Reed & Alexe, 2024. "Chemoproteogenomic stratification of the missense variant cysteinome," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    15. François Virard & Stéphane Giraud & Mélanie Bonnet & Léa Magadoux & Laetitia Martin & Thuy Ha Pham & Najwa Skafi & Sophie Deneuve & Rita Frem & Bruno O. Villoutreix & Nawal Hajj Sleiman & Jonathan Reb, 2024. "Targeting ERK-MYD88 interaction leads to ERK dysregulation and immunogenic cancer cell death," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52574-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.