IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52458-4.html
   My bibliography  Save this article

Strategically engineered Au(I) complexes for orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death

Author

Listed:
  • Na Feng

    (Southern Medical University)

  • Zhen Peng

    (Central China Normal University)

  • Xin Zhang

    (East China Normal University)

  • Yiling Lin

    (Southern Medical University)

  • Lianrui Hu

    (East China Normal University)

  • Lei Zheng

    (Southern Medical University)

  • Ben Zhong Tang

    (The Chinese University of Hong Kong)

  • Jing Zhang

    (Southern Medical University)

Abstract

Cancer is a significant cause of death around the world, and for many varieties, treatment is not successful. Therefore, there is a need for the development of innovative, efficacious, and precisely targeted treatments. Here, we develop a series of Au(I) complexes (1-4) through rational manipulation of ligand structures, thereby achieving tumor cell specific targeting and orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death. A comprehensive exploration based on in vitro and in vivo female mice experimentation shows that complex 4 exhibits proficiency in specific tumor imaging, endoplasmic reticulum targeting, and has robust therapeutic capabilities. Mechanistic elucidation indicates that the anticancer effect derives from the synergistic actions of thioredoxin reductase inhibition, highly efficient reactive oxygen species production and immunogenic cell death. This work presents a report on a robust Au(I) complex integrating three therapeutic modalities within a singular system. The strategy presented in this work provides a valuable reference for the development of high-performance therapeutic agents.

Suggested Citation

  • Na Feng & Zhen Peng & Xin Zhang & Yiling Lin & Lianrui Hu & Lei Zheng & Ben Zhong Tang & Jing Zhang, 2024. "Strategically engineered Au(I) complexes for orchestrated tumor eradication via chemo-phototherapy and induced immunogenic cell death," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52458-4
    DOI: 10.1038/s41467-024-52458-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52458-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52458-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sam Benson & Fabio Moliner & Antonio Fernandez & Erkin Kuru & Nicholas L. Asiimwe & Jun-Seok Lee & Lloyd Hamilton & Dirk Sieger & Isabel R. Bravo & Abigail M. Elliot & Yi Feng & Marc Vendrell, 2021. "Photoactivatable metabolic warheads enable precise and safe ablation of target cells in vivo," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Johannes Karges & Shi Kuang & Federica Maschietto & Olivier Blacque & Ilaria Ciofini & Hui Chao & Gilles Gasser, 2020. "Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gang Xu & Chengwei Li & Chen Chi & Luyan Wu & Yanyan Sun & Jian Zhao & Xing-Hua Xia & Shaohua Gou, 2022. "A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Erkin Kuru & Jonathan Rittichier & Helena Puig & Allison Flores & Subhrajit Rout & Isaac Han & Abigail E. Reese & Thomas M. Bartlett & Fabio Moliner & Sylvie G. Bernier & Jason D. Galpin & Jorge March, 2024. "Rapid discovery and evolution of nanosensors containing fluorogenic amino acids," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yuling Xu & Chonglu Li & Shuai Lu & Zhizheng Wang & Shuang Liu & Xiujun Yu & Xiaopeng Li & Yao Sun, 2022. "Construction of emissive ruthenium(II) metallacycle over 1000 nm wavelength for in vivo biomedical applications," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Nong Lu & Zhihong Deng & Jing Gao & Chao Liang & Haiping Xia & Pingyu Zhang, 2022. "An osmium-peroxo complex for photoactive therapy of hypoxic tumors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Eleni Nestoros & Fabio Moliner & Ferran Nadal-Bufi & Deborah Seah & M. Carmen Ortega-Liebana & Zhiming Cheng & Sam Benson & Catherine Adam & Larissa Maierhofer & Kostiantyn Kozoriz & Jun-Seok Lee & As, 2024. "Tuning singlet oxygen generation with caged organic photosensitizers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Guanqun Han & Guodong Li & Jie Huang & Chuang Han & Claudia Turro & Yujie Sun, 2022. "Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52458-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.