IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52421-3.html
   My bibliography  Save this article

The impact of landscape structure on pesticide exposure to honey bees

Author

Listed:
  • Shumpei Hisamoto

    (National Institute for Environmental Studies
    Meiji University)

  • Makihiko Ikegami

    (National Institute for Environmental Studies)

  • Koichi Goka

    (National Institute for Environmental Studies)

  • Yoshiko Sakamoto

    (National Institute for Environmental Studies)

Abstract

Pesticides may have serious negative impacts on bee populations. The pesticide exposure of bees could depend on the surrounding landscapes in which they forage. In this study, we assess pesticide exposure across various land-use categories, while targeting the Japanese honey bee, Apis cerana japonica, a native subspecies of the eastern honey bee. In a project involving public participation, we measured the concentrations of major pesticides in honey and beeswax collected from 175 Japanese honey bee colonies across Japan and quantitatively analyzed the relationships between pesticide presence/absence or pesticide concentration and land-use categories around the colonies. Our findings revealed that the surrounding environment in which bees live strongly influences pesticide residues in beehive materials, whether the pesticides are systemic or not, with a clear trend for each land-use category. Agricultural lands, particularly paddy fields and orchards, and urban areas resulted in higher pesticide exposure, whereas forests presented a lower risk of exposure. To effectively control pesticide exposure levels in bees, it is essential to understand pesticide usage patterns and to develop appropriate regulatory systems in non-agricultural lands, similar to those in agricultural lands.

Suggested Citation

  • Shumpei Hisamoto & Makihiko Ikegami & Koichi Goka & Yoshiko Sakamoto, 2024. "The impact of landscape structure on pesticide exposure to honey bees," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52421-3
    DOI: 10.1038/s41467-024-52421-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52421-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52421-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ben A. Woodcock & Nicholas J. B. Isaac & James M. Bullock & David B. Roy & David G. Garthwaite & Andrew Crowe & Richard F. Pywell, 2016. "Impacts of neonicotinoid use on long-term population changes in wild bees in England," Nature Communications, Nature, vol. 7(1), pages 1-8, November.
    2. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    3. Charlie C. Nicholson & Jessica Knapp & Tomasz Kiljanek & Matthias Albrecht & Marie-Pierre Chauzat & Cecilia Costa & Pilar Rúa & Alexandra-Maria Klein & Marika Mänd & Simon G. Potts & Oliver Schweiger , 2024. "Pesticide use negatively affects bumble bees across European landscapes," Nature, Nature, vol. 628(8007), pages 355-358, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Melissa Guzman & Elizabeth Elle & Lora A. Morandin & Neil S. Cobb & Paige R. Chesshire & Lindsie M. McCabe & Alice Hughes & Michael Orr & Leithen K. M’Gonigle, 2024. "Impact of pesticide use on wild bee distributions across the United States," Nature Sustainability, Nature, vol. 7(10), pages 1324-1334, October.
    2. Blaydes, H. & Potts, S.G. & Whyatt, J.D. & Armstrong, A., 2021. "Opportunities to enhance pollinator biodiversity in solar parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Hannah Romanowski & Lauren Blake, 2023. "Neonicotinoid seed treatment on sugar beet in England: a qualitative analysis of the controversy, existing policy and viability of alternatives," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 453-472, September.
    4. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Yang, Haijiang & Gou, Xiaohua & Niu, Yibo & Shi, Wenwei & Wang, Xinyun & Wei, Yuxin & Maraseni, Tek, 2024. "Assessing pollinator abundance and services to enhance agricultural sustainability and crop yield optimization in the Qilian Mountains," Agricultural Systems, Elsevier, vol. 221(C).
    6. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    7. Centner, Terence J. & Brewer, Brady & Leal, Isaac, 2018. "Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species," Land Use Policy, Elsevier, vol. 75(C), pages 70-76.
    8. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    9. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Jordan Hristov & Yann Clough & Ullrika Sahlin & Henrik G. Smith & Martin Stjernman & Ola Olsson & Amanda Sahrbacher & Mark V. Brady, 2020. "Impacts of the EU's Common Agricultural Policy “Greening” Reform on Agricultural Development, Biodiversity, and Ecosystem Services," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 42(4), pages 716-738, December.
    11. Giulia Capotorti & Simone Valeri & Arianna Giannini & Valerio Minorenti & Mariagrazia Piarulli & Paolo Audisio, 2023. "On the Role of Natural and Induced Landscape Heterogeneity for the Support of Pollinators: A Green Infrastructure Perspective Applied in a Peri-Urban System," Land, MDPI, vol. 12(2), pages 1-29, January.
    12. Tremlett, Constance J. & Peh, Kelvin S.-H. & Zamora-Gutierrez, Veronica & Schaafsma, Marije, 2021. "Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico," Ecosystem Services, Elsevier, vol. 47(C).
    13. Fatih Sari, 2024. "Predicting future opportunities and threats of land-use changes on beekeeping activities in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 22389-22420, September.
    14. Stephane Knoll & Valeria Fadda & Fahad Ahmed & Maria Grazia Cappai, 2024. "The Nutritional Year-Cycle of Italian Honey Bees ( Apis mellifera ligustica ) in a Southern Temperate Climate," Agriculture, MDPI, vol. 14(5), pages 1-20, May.
    15. Edward B. Barbier & Joanne C. Burgess, 2021. "Sustainable Use of the Environment, Planetary Boundaries and Market Power," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    16. Semeraro, Teodoro & Scarano, Aurelia & Curci, Lorenzo Maria & Leggieri, Angelo & Lenucci, Marcello & Basset, Alberto & Santino, Angelo & Piro, Gabriella & De Caroli, Monica, 2024. "Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change," Applied Energy, Elsevier, vol. 358(C).
    17. Raviv, Orna & Shiri, Zemah-Shamir & Ido, Izhaki & Alon, Lotan, 2021. "The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel," Ecosystem Services, Elsevier, vol. 49(C).
    18. Silvia Pătruică & Roxana Nicoleta Lazăr & Genoveva Buzamăt & Marius Boldea, 2023. "Economic Benefits of Using Essential Oils in Food Stimulation Administrated to Bee Colonies," Agriculture, MDPI, vol. 13(3), pages 1-12, February.
    19. José Luis Molina-Pardo & Emilio Rodríguez-Caballero & Miguel Cueto & Pablo Barranco & Manuel Sánchez-Robles & Azucena Laguía-Allué & Esther Giménez-Luque, 2021. "Effects of Agricultural Use on Endangered Plant Taxa in Spain," Agriculture, MDPI, vol. 11(11), pages 1-25, November.
    20. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52421-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.