IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v358y2024ics0306261923019293.html
   My bibliography  Save this article

Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change

Author

Listed:
  • Semeraro, Teodoro
  • Scarano, Aurelia
  • Curci, Lorenzo Maria
  • Leggieri, Angelo
  • Lenucci, Marcello
  • Basset, Alberto
  • Santino, Angelo
  • Piro, Gabriella
  • De Caroli, Monica

Abstract

Photovoltaic (PV) systems play an important role in the sustainable energy transition, but their impact on food security is ambiguous due to the shift in land use from agriculture to energy production. Currently, agrivoltaic is emerging as an alternative sustainable energy source that optimises multifunctional land use by simultaneously supporting electricity generation and agricultural activities. While many studies have extolled the benefits of shade provided by agrivoltaic on crop water balance and evapotranspiration, plant ecological adaptation, such as Shade Avoidance Syndrome (SAS), and its implications for food security remain relatively unexplored. In this context, we have investigated the influence of a panel-generated shadow on chicory crop production in terms of plant biomass yield and its quality for human health under different water irrigation regimes. For each chicory plant, fresh weight and leaf dimensions were measured to estimate edible biomass, while leaf water content, chlorophylls a and b, carotenoids, metabolite profile and antioxidant capacity were evaluated to assess food quality. Our results show that the shading system has a remarkable capacity to increase edible chicory biomass production compared to full sunlight conditions of 69% and 23%, respectively for high water supply and low water supply, and greater capacity to promote pollination ecosystem services. The shade, provided by a well-designed agrivoltaic system, improves SAS and directly increase yield without altering food quality. Thus, agrivoltaic systems can combine renewable energy strategies with food security, while enhancing ecosystem services for human well-being.

Suggested Citation

  • Semeraro, Teodoro & Scarano, Aurelia & Curci, Lorenzo Maria & Leggieri, Angelo & Lenucci, Marcello & Basset, Alberto & Santino, Angelo & Piro, Gabriella & De Caroli, Monica, 2024. "Shading effects in agrivoltaic systems can make the difference in boosting food security in climate change," Applied Energy, Elsevier, vol. 358(C).
  • Handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019293
    DOI: 10.1016/j.apenergy.2023.122565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923019293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dinesh, Harshavardhan & Pearce, Joshua M., 2016. "The potential of agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 299-308.
    2. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    3. Semeraro, Teodoro & Scarano, Aurelia & Santino, Angelo & Emmanuel, Rohinton & Lenucci, Marcello, 2022. "An innovative approach to combine solar photovoltaic gardens with agricultural production and ecosystem services," Ecosystem Services, Elsevier, vol. 56(C).
    4. Yurong Xie & Yang Liu & Hai Wang & Xiaojing Ma & Baobao Wang & Guangxia Wu & Haiyang Wang, 2017. "Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    5. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    6. Teodoro Semeraro & Aurelia Scarano & Angelo Leggieri & Antonio Calisi & Monica De Caroli, 2023. "Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    7. Zhang, Yihao & Wu, Ya & Yan, Jianzhong & Peng, Ting, 2022. "How does rural labor migration affect crop diversification for adapting to climate change in the Hehuang Valley, Tibetan Plateau?," Land Use Policy, Elsevier, vol. 113(C).
    8. Rebecca R. Hernandez & Alona Armstrong & Jennifer Burney & Greer Ryan & Kara Moore-O’Leary & Ibrahima Diédhiou & Steven M. Grodsky & Leslie Saul-Gershenz & Rob Davis & Jordan Macknick & Dustin Mulvane, 2019. "Techno–ecological synergies of solar energy for global sustainability," Nature Sustainability, Nature, vol. 2(7), pages 560-568, July.
    9. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    10. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Agostini, A. & Colauzzi, M. & Amaducci, S., 2021. "Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment," Applied Energy, Elsevier, vol. 281(C).
    12. Semeraro, Teodoro & Pomes, Alessandro & Del Giudice, Cecilia & Negro, Danilo & Aretano, Roberta, 2018. "Planning ground based utility scale solar energy as green infrastructure to enhance ecosystem services," Energy Policy, Elsevier, vol. 117(C), pages 218-227.
    13. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    14. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuppari, Rosa Isabella & Branscomb, Allan & Graham, Maggie & Negash, Fikeremariam & Smith, Angelique Kidd & Proctor, Kyle & Rupp, David & Tilahun Ayalew, Abiyou & Getaneh Tilaye, Gizaw & Higgins, Chad, 2024. "Agrivoltaics: Synergies and trade-offs in achieving the sustainable development goals at the global and local scale," Applied Energy, Elsevier, vol. 362(C).
    2. Mamun, Mohammad Abdullah Al & Dargusch, Paul & Wadley, David & Zulkarnain, Noor Azwa & Aziz, Ammar Abdul, 2022. "A review of research on agrivoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. C, Rösch & E, Fakharizadehshirazi, 2024. "The spatial socio-technical potential of agrivoltaics in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    5. Gorjian, Shiva & Jalili Jamshidian, Farid & Gorjian, Alireza & Faridi, Hamideh & Vafaei, Mohammad & Zhang, Fangxin & Liu, Wen & Elia Campana, Pietro, 2023. "Technological advancements and research prospects of innovative concentrating agrivoltaics," Applied Energy, Elsevier, vol. 337(C).
    6. Al Mamun, Mohammad Abdullah & Garba, Ismail Ibrahim & Campbell, Shane & Dargusch, Paul & deVoil, Peter & Aziz, Ammar Abdul, 2023. "Biomass production of a sub-tropical grass under different photovoltaic installations using different grazing strategies," Agricultural Systems, Elsevier, vol. 208(C).
    7. Lee, Sangik & Lee, Jong-hyuk & Jeong, Youngjoon & Kim, Dongsu & Seo, Byung-hun & Seo, Ye-jin & Kim, Taejin & Choi, Won, 2023. "Agrivoltaic system designing for sustainability and smart farming: Agronomic aspects and design criteria with safety assessment," Applied Energy, Elsevier, vol. 341(C).
    8. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    9. Chopdar, R.K. & Sengar, N. & Giri, Nimay Chandra & Halliday, D., 2024. "Comprehensive review on agrivoltaics with technical, environmental and societal insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Bellone, Yuri & Croci, Michele & Impollonia, Giorgio & Nik Zad, Amirhossein & Colauzzi, Michele & Campana, Pietro Elia & Amaducci, Stefano, 2024. "Simulation-Based Decision Support for Agrivoltaic Systems," Applied Energy, Elsevier, vol. 369(C).
    11. Varo-Martínez, M. & Fernández-Ahumada, L.M. & Ramírez-Faz, J.C. & Ruiz-Jiménez, R. & López-Luque, R., 2024. "Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants," Applied Energy, Elsevier, vol. 361(C).
    12. Mohd Ashraf Zainol Abidin & Muhammad Nasiruddin Mahyuddin & Muhammad Ammirrul Atiqi Mohd Zainuri, 2021. "Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    13. Jamil, Uzair & Hickey, Thomas & Pearce, Joshua M., 2024. "Solar energy modelling and proposed crops for different types of agrivoltaics systems," Energy, Elsevier, vol. 304(C).
    14. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    15. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Joshua M. Pearce, 2022. "Agrivoltaics in Ontario Canada: Promise and Policy," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    17. Widmer, J. & Christ, B. & Grenz, J. & Norgrove, L., 2024. "Agrivoltaics, a promising new tool for electricity and food production: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Ji, Zhengsen & Li, Wanying & Niu, Dongxiao, 2024. "Optimal investment decision of agrivoltaic coupling energy storage project based on distributed linguistic trust and hybrid evaluation method," Applied Energy, Elsevier, vol. 353(PA).
    20. Cuppari, Rosa I. & Higgins, Chad W. & Characklis, Gregory W., 2021. "Agrivoltaics and weather risk: A diversification strategy for landowners," Applied Energy, Elsevier, vol. 291(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:358:y:2024:i:c:s0306261923019293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.