IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51933-2.html
   My bibliography  Save this article

A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection

Author

Listed:
  • Tingting Li

    (Hunan University
    Hunan University)

  • Xuanbai Ren

    (Hunan University)

  • Xiaoli Luo

    (Hunan University)

  • Zhuole Wang

    (Hunan University
    Hunan University)

  • Zhenlu Li

    (Tianjin University)

  • Xiaoyan Luo

    (Hunan University)

  • Jun Shen

    (Hunan University
    Hunan University)

  • Yun Li

    (The 2nd Xiangya Hospital of Central South University)

  • Dan Yuan

    (Hunan University
    Hunan University)

  • Ruth Nussinov

    (Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute
    Tel Aviv University)

  • Xiangxiang Zeng

    (Hunan University)

  • Junfeng Shi

    (Hunan University
    Hunan University)

  • Feixiong Cheng

    (Lerner Research Institute, Cleveland Clinic
    Lerner Research Institute, Cleveland Clinic
    Case Western Reserve University
    Case Western Reserve University)

Abstract

Development of potent and broad-spectrum antimicrobial peptides (AMPs) could help overcome the antimicrobial resistance crisis. We develop a peptide language-based deep generative framework (deepAMP) for identifying potent, broad-spectrum AMPs. Using deepAMP to reduce antimicrobial resistance and enhance the membrane-disrupting abilities of AMPs, we identify, synthesize, and experimentally test 18 T1-AMP (Tier 1) and 11 T2-AMP (Tier 2) candidates in a two-round design and by employing cross-optimization-validation. More than 90% of the designed AMPs show a better inhibition than penetratin in both Gram-positive (i.e., S. aureus) and Gram-negative bacteria (i.e., K. pneumoniae and P. aeruginosa). T2-9 shows the strongest antibacterial activity, comparable to FDA-approved antibiotics. We show that three AMPs (T1-2, T1-5 and T2-10) significantly reduce resistance to S. aureus compared to ciprofloxacin and are effective against skin wound infection in a female wound mouse model infected with P. aeruginosa. In summary, deepAMP expedites discovery of effective, broad-spectrum AMPs against drug-resistant bacteria.

Suggested Citation

  • Tingting Li & Xuanbai Ren & Xiaoli Luo & Zhuole Wang & Zhenlu Li & Xiaoyan Luo & Jun Shen & Yun Li & Dan Yuan & Ruth Nussinov & Xiangxiang Zeng & Junfeng Shi & Feixiong Cheng, 2024. "A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51933-2
    DOI: 10.1038/s41467-024-51933-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51933-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51933-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lise Dieltjens & Kenny Appermans & Maries Lissens & Bram Lories & Wook Kim & Erik V. Van der Eycken & Kevin R. Foster & Hans P. Steenackers, 2020. "Inhibiting bacterial cooperation is an evolutionarily robust anti-biofilm strategy," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Cassandra Willyard, 2017. "The drug-resistant bacteria that pose the greatest health threats," Nature, Nature, vol. 543(7643), pages 15-15, March.
    3. Josh Abramson & Jonas Adler & Jack Dunger & Richard Evans & Tim Green & Alexander Pritzel & Olaf Ronneberger & Lindsay Willmore & Andrew J. Ballard & Joshua Bambrick & Sebastian W. Bodenstein & David , 2024. "Accurate structure prediction of biomolecular interactions with AlphaFold 3," Nature, Nature, vol. 630(8016), pages 493-500, June.
    4. William F. Porto & Luz Irazazabal & Eliane S. F. Alves & Suzana M. Ribeiro & Carolina O. Matos & Állan S. Pires & Isabel C. M. Fensterseifer & Vivian J. Miranda & Evan F. Haney & Vincent Humblot & Mar, 2018. "In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Itxaso Anso & Samira Zouhir & Thibault Géry Sana & Petya Violinova Krasteva, 2024. "Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Paloma García Casas & Michela Rossini & Linnea Påvénius & Mezida Saeed & Nikita Arnst & Sonia Sonda & Tânia Fernandes & Irene D’Arsiè & Matteo Bruzzone & Valeria Berno & Andrea Raimondi & Maria Livia , 2024. "Simultaneous detection of membrane contact dynamics and associated Ca2+ signals by reversible chemogenetic reporters," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Jidong Fei & Dongdong Zhao & Caiyi Pang & Ju Li & Siwei Li & Wentao Qiao & Juan Tan & Changhao Bi & Xueli Zhang, 2025. "Mismatch prime editing gRNA increased efficiency and reduced indels," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    4. Huiyu Cai & Zuobai Zhang & Mingkai Wang & Bozitao Zhong & Quanxiao Li & Yuxuan Zhong & Yanling Wu & Tianlei Ying & Jian Tang, 2024. "Pretrainable geometric graph neural network for antibody affinity maturation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Anete Romanauska & Edvinas Stankunas & Maya Schuldiner & Alwin Köhler, 2024. "Seipin governs phosphatidic acid homeostasis at the inner nuclear membrane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Nathalie Béchon & Nitzan Tal & Avigail Stokar-Avihail & Alon Savidor & Meital Kupervaser & Sarah Melamed & Gil Amitai & Rotem Sorek, 2024. "Diversification of molecular pattern recognition in bacterial NLR-like proteins," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Jason Saba & Katia Flores & Bailey Marshall & Michael D. Engstrom & Yikai Peng & Atharv S. Garje & Laurie E. Comstock & Robert Landick, 2024. "Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Amika Singla & Daniel J. Boesch & Ho Yee Joyce Fung & Chigozie Ngoka & Avery S. Enriquez & Ran Song & Daniel A. Kramer & Yan Han & Esther Banarer & Andrew Lemoff & Puneet Juneja & Daniel D. Billadeau , 2024. "Structural basis for Retriever-SNX17 assembly and endosomal sorting," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Sanghyeon Choi & Youngjin Lee & Shinhye Park & Song Yee Jang & Jongbin Park & Do Won Oh & Su-Man Kim & Tae-Hwan Kim & Ga Seul Lee & Changyi Cho & Byoung Sik Kim & Donghan Lee & Eun-Hee Kim & Hae-Kap C, 2024. "Dissemination of pathogenic bacteria is reinforced by a MARTX toxin effector duet," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Yijia Cheng & Mark A. B. Kreutzberger & Jianting Han & Edward H. Egelman & Qin Cao, 2024. "Molecular architecture of the assembly of Bacillus spore coat protein GerQ revealed by cryo-EM," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Leishu Lin & Jiayuan Dong & Shun Xu & Jinman Xiao & Cong Yu & Fengfeng Niu & Zhiyi Wei, 2024. "Autoinhibition and relief mechanisms for MICAL monooxygenases in F-actin disassembly," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Yanyi Song & Shuyi Jian & Junlin Teng & Pengli Zheng & Zhe Zhang, 2025. "Structural basis of human VANGL-PRICKLE interaction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Michael Kugler & Felix J. Metzner & Gregor Witte & Karl-Peter Hopfner & Katja Lammens, 2024. "Phosphorylation-mediated conformational change regulates human SLFN11," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Jiawei Ge & Ting Wang & Hongwei Yu & Lidan Ye, 2025. "De novo biosynthesis of nylon 12 monomer ω-aminododecanoic acid," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    15. Helena E. Sverak & Luke N. Yaeger & Liam J. Worrall & Condurache M. Vacariu & Amy J. Glenwright & Marija Vuckovic & Zayni-Dean Al Azawi & Ryan P. Lamers & Victoria A. Marko & Clarissa Skorupski & Arvi, 2024. "Cryo-EM characterization of the anydromuropeptide permease AmpG central to bacterial fitness and β-lactam antibiotic resistance," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Ying Zhang & Shenqiang Wang & Yinxian Yang & Sheng Zhao & Jiahuan You & Junxia Wang & Jingwei Cai & Hao Wang & Jie Wang & Wei Zhang & Jicheng Yu & Chunmao Han & Yuqi Zhang & Zhen Gu, 2023. "Scarless wound healing programmed by core-shell microneedles," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Fabian Ries & Jasmin Gorlt & Sabrina Kaiser & Vanessa Scherer & Charlotte Seydel & Sandra Nguyen & Andreas Klingl & Julia Legen & Christian Schmitz-Linneweber & Hinrik Plaggenborg & Jediael Z. Y. Ng &, 2025. "A truncated variant of the ribosome-associated trigger factor specifically contributes to plant chloroplast ribosome biogenesis," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    18. Rose J. Miller & Ian A. Durie & Aaron D. Gingerich & Mohamed A. Elbehairy & Abigail G. Branch & Riley G. Davis & Nada Abbadi & Melinda A. Brindley & Jarrod J. Mousa, 2024. "The structural basis of protective and nonprotective human monoclonal antibodies targeting the parainfluenza virus type 3 hemagglutinin-neuraminidase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Reilly Pidgeon & Sacha Mitchell & Michael Shamash & Layan Suleiman & Lharbi Dridi & Corinne F. Maurice & Bastien Castagner, 2025. "Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    20. Luc Provencher & Wilson Nartey & Peter M. Brownlee & Austin W. Atkins & Jean-Philippe Gagné & Lou Baudrier & Nicholas S. Y. Ting & Cortt G. Piett & Shujuan Fang & Dustin D. Pearson & Shaun Moore & Pie, 2025. "CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair," Nature Communications, Nature, vol. 16(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51933-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.