IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51922-5.html
   My bibliography  Save this article

p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation

Author

Listed:
  • Clyde A. Campbell

    (Development and Cell Biology; Iowa State University)

  • Rodolfo Calderon

    (Development and Cell Biology; Iowa State University)

  • Giulia Pavani

    (The Children’s Hospital of Philadelphia)

  • Xiaoyi Cheng

    (Development and Cell Biology; Iowa State University)

  • Radwa Barakat

    (Development and Cell Biology; Iowa State University
    Benha University)

  • Elizabeth Snella

    (Development and Cell Biology; Iowa State University)

  • Fang Liu

    (Development and Cell Biology; Iowa State University)

  • Xiyu Peng

    (Iowa State University)

  • Jeffrey J. Essner

    (Development and Cell Biology; Iowa State University)

  • Karin S. Dorman

    (Development and Cell Biology; Iowa State University
    Iowa State University)

  • Maura McGrail

    (Development and Cell Biology; Iowa State University)

  • Paul Gadue

    (The Children’s Hospital of Philadelphia)

  • Deborah L. French

    (The Children’s Hospital of Philadelphia)

  • Raquel Espin-Palazon

    (Development and Cell Biology; Iowa State University)

Abstract

Most gene functions have been discovered through phenotypic observations under loss of function experiments that lack temporal control. However, cell signaling relies on limited transcriptional effectors, having to be re-used temporally and spatially within the organism. Despite that, the dynamic nature of signaling pathways have been overlooked due to the difficulty on their assessment, resulting in important bottlenecks. Here, we have utilized the rapid and synchronized developmental transitions occurring within the zebrafish embryo, in conjunction with custom NF-kB reporter embryos driving destabilized fluorophores that report signaling dynamics in real time. We reveal that NF-kB signaling works as a clock that controls the developmental progression of hematopoietic stem and progenitor cells (HSPCs) by two p65 activity waves that inhibit cell cycle. Temporal disruption of each wave results in contrasting phenotypic outcomes: loss of HSPCs due to impaired specification versus proliferative expansion and failure to delaminate from their niche. We also show functional conservation during human hematopoietic development using iPSC models. Our work identifies p65 as a previously unrecognized contributor to cell cycle regulation, revealing why and when pro-inflammatory signaling is required during HSPC development. It highlights the importance of considering and leveraging cell signaling as a temporally dynamic entity.

Suggested Citation

  • Clyde A. Campbell & Rodolfo Calderon & Giulia Pavani & Xiaoyi Cheng & Radwa Barakat & Elizabeth Snella & Fang Liu & Xiyu Peng & Jeffrey J. Essner & Karin S. Dorman & Maura McGrail & Paul Gadue & Debor, 2024. "p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51922-5
    DOI: 10.1038/s41467-024-51922-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51922-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51922-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoonsung Lee & Jennifer E. Manegold & Albert D. Kim & Claire Pouget & David L. Stachura & Wilson K. Clements & David Traver, 2014. "FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    2. Jean-Charles Boisset & Wiggert van Cappellen & Charlotte Andrieu-Soler & Niels Galjart & Elaine Dzierzak & Catherine Robin, 2010. "In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium," Nature, Nature, vol. 464(7285), pages 116-120, March.
    3. Nathalie Percie du Sert & Viki Hurst & Amrita Ahluwalia & Sabina Alam & Marc T Avey & Monya Baker & William J Browne & Alejandra Clark & Innes C Cuthill & Ulrich Dirnagl & Michael Emerson & Paul Garne, 2020. "The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research," PLOS Biology, Public Library of Science, vol. 18(7), pages 1-12, July.
    4. Patrick Coulombe & Grace Cole & Amanda Fentiman & Jeremy D. K. Parker & Eric Yung & Misha Bilenky & Lemlem Degefie & Patrick Lac & Maggie Y. M. Ling & Derek Tam & R. Keith Humphries & Aly Karsan, 2023. "Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Julien Y. Bertrand & Neil C. Chi & Buyung Santoso & Shutian Teng & Didier Y. R. Stainier & David Traver, 2010. "Haematopoietic stem cells derive directly from aortic endothelium during development," Nature, Nature, vol. 464(7285), pages 108-111, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyi Cheng & Radwa Barakat & Giulia Pavani & Masuma Khatun Usha & Rodolfo Calderon & Elizabeth Snella & Abigail Gorden & Yudi Zhang & Paul Gadue & Deborah L. French & Karin S. Dorman & Antonella Fid, 2023. "Nod1-dependent NF-kB activation initiates hematopoietic stem cell specification in response to small Rho GTPases," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Emi Murayama & Catherine Vivier & Anne Schmidt & Philippe Herbomel, 2023. "Alcam-a and Pdgfr-α are essential for the development of sclerotome-derived stromal cells that support hematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Wen Hao Neo & Yiran Meng & Alba Rodriguez-Meira & Muhammad Z. H. Fadlullah & Christopher A. G. Booth & Emanuele Azzoni & Supat Thongjuea & Marella F. T. R. Bruijn & Sten Eirik W. Jacobsen & Adam J. Me, 2021. "Ezh2 is essential for the generation of functional yolk sac derived erythro-myeloid progenitors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Lixiang Zhai & Haitao Xiao & Chengyuan Lin & Hoi Leong Xavier Wong & Yan Y. Lam & Mengxue Gong & Guojun Wu & Ziwan Ning & Chunhua Huang & Yijing Zhang & Chao Yang & Jingyuan Luo & Lu Zhang & Ling Zhao, 2023. "Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Karolína Ondrová & Iveta Zůvalová & Barbora Vyhlídalová & Kristýna Krasulová & Eva Miková & Radim Vrzal & Petr Nádvorník & Binod Nepal & Sandhya Kortagere & Martina Kopečná & David Kopečný & Marek Šeb, 2023. "Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. L. Tanner & A. B. Single & R. K. V. Bhongir & M. Heusel & T. Mohanty & C. A. Q. Karlsson & L. Pan & C-M. Clausson & J. Bergwik & K. Wang & C. K. Andersson & R. M. Oommen & J. S. Erjefält & J. Malmströ, 2023. "Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Victoria Ozberk & Mehfuz Zaman & Ailin Lepletier & Sharareh Eskandari & Jacqualine Kaden & Jamie-Lee Mills & Ainslie Calcutt & Jessica Dooley & Yongbao Huo & Emma L. Langshaw & Glen C. Ulett & Michael, 2023. "A Glycolipidated-liposomal peptide vaccine confers long-term mucosal protection against Streptococcus pyogenes via IL-17, macrophages and neutrophils," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Rita Silvério-Alves & Ilia Kurochkin & Anna Rydström & Camila Vazquez Echegaray & Jakob Haider & Matthew Nicholls & Christina Rode & Louise Thelaus & Aida Yifter Lindgren & Alexandra Gabriela Ferreira, 2023. "GATA2 mitotic bookmarking is required for definitive haematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Dorothee Bornhorst & Amulya V. Hejjaji & Lena Steuter & Nicole M. Woodhead & Paul Maier & Alessandra Gentile & Alice Alhajkadour & Octavia Santis Larrain & Michael Weber & Khrievono Kikhi & Stefan Gue, 2024. "The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. P. Bielefeld & A. Martirosyan & S. Martín-Suárez & A. Apresyan & G. F. Meerhoff & F. Pestana & S. Poovathingal & N. Reijner & W. Koning & R. A. Clement & I. Veen & E. M. Toledo & O. Polzer & I. Durá &, 2024. "Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Hirotaka Iijima & Gabrielle Gilmer & Kai Wang & Allison C. Bean & Yuchen He & Hang Lin & Wan-Yee Tang & Daniel Lamont & Chia Tai & Akira Ito & Jeffrey J. Jones & Christopher Evans & Fabrisia Ambrosio, 2023. "Age-related matrix stiffening epigenetically regulates α-Klotho expression and compromises chondrocyte integrity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Robert Saddawi-Konefka & Aoife O’Farrell & Farhoud Faraji & Lauren Clubb & Michael M. Allevato & Shawn M. Jensen & Bryan S. Yung & Zhiyong Wang & Victoria H. Wu & Nana-Ama Anang & Riyam Al Msari & Shi, 2022. "Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Yuu Okura & Yuri Ikawa-Teranishi & Akihiko Mizoroki & Noriyuki Takahashi & Takashi Tsushima & Machiko Irie & Zulkarnain Harfuddin & Momoko Miura-Okuda & Shunsuke Ito & Genki Nakamura & Hiroaki Takesue, 2023. "Characterizations of a neutralizing antibody broadly reactive to multiple gluten peptide:HLA-DQ2.5 complexes in the context of celiac disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Yumin Liu & Linjuan Shi & Yifan Chen & Sifan Luo & Yuehang Chen & Hongtian Chen & Wenlang Lan & Xun Lu & Zhan Cao & Zehua Ye & Jinping Li & Bo Yu & Elaine Dzierzak & Zhuan Li, 2024. "Autophagy regulates the maturation of hematopoietic precursors in the embryo," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Anna E. Williamson & Sanuri Liyanage & Mohammadhossein Hassanshahi & Malathi S. I. Dona & Deborah Toledo-Flores & Dang X. A. Tran & Catherine Dimasi & Nisha Schwarz & Sanuja Fernando & Thalia Salagara, 2024. "Discovery of an embryonically derived bipotent population of endothelial-macrophage progenitor cells in postnatal aorta," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    16. Lydia Teboul & James Amos-Landgraf & Fernando J. Benavides & Marie-Christine Birling & Steve D. M. Brown & Elizabeth Bryda & Rosie Bunton-Stasyshyn & Hsian-Jean Chin & Martina Crispo & Fabien Delerue , 2024. "Improving laboratory animal genetic reporting: LAG-R guidelines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Patrick Coulombe & Grace Cole & Amanda Fentiman & Jeremy D. K. Parker & Eric Yung & Misha Bilenky & Lemlem Degefie & Patrick Lac & Maggie Y. M. Ling & Derek Tam & R. Keith Humphries & Aly Karsan, 2023. "Meis1 establishes the pre-hemogenic endothelial state prior to Runx1 expression," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Dinh-Huy Nguyen & Sung-Hwan You & Hien Thi-Thu Ngo & Khuynh Nguyen & Khang Vuong Tran & Tan-Huy Chu & So-young Kim & Sang-Jun Ha & Yeongjin Hong & Jung-Joon Min, 2024. "Reprogramming the tumor immune microenvironment using engineered dual-drug loaded Salmonella," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Zaniah N. Gonzalez Galofre & Alastair M. Kilpatrick & Madalena Marques & Diana Sá da Bandeira & Telma Ventura & Mario Gomez Salazar & Léa Bouilleau & Yvan Marc & Ana B. Barbosa & Fiona Rossi & Mariana, 2024. "Runx1+ vascular smooth muscle cells are essential for hematopoietic stem and progenitor cell development in vivo," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51922-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.