IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31941-w.html
   My bibliography  Save this article

Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC

Author

Listed:
  • Robert Saddawi-Konefka

    (Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine
    Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego)

  • Aoife O’Farrell

    (Moores Cancer Center, UC San Diego
    University of Pennsylvania)

  • Farhoud Faraji

    (Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine
    Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego)

  • Lauren Clubb

    (Moores Cancer Center, UC San Diego)

  • Michael M. Allevato

    (Moores Cancer Center, UC San Diego)

  • Shawn M. Jensen

    (Earle A Chiles Research Institute, Robert W Franz Cancer Research Center, Providence Portland Medical Center)

  • Bryan S. Yung

    (Moores Cancer Center, UC San Diego)

  • Zhiyong Wang

    (Moores Cancer Center, UC San Diego)

  • Victoria H. Wu

    (Moores Cancer Center, UC San Diego)

  • Nana-Ama Anang

    (Moores Cancer Center, UC San Diego)

  • Riyam Al Msari

    (Moores Cancer Center, UC San Diego)

  • Shiruyeh Schokrpur

    (Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego
    Division of Hematology-Oncology, UC San Diego School of Medicine)

  • Ida Franiak Pietryga

    (Moores Cancer Center, UC San Diego)

  • Alfredo A. Molinolo

    (Moores Cancer Center, UC San Diego)

  • Jill P. Mesirov

    (Moores Cancer Center, UC San Diego
    Department of Medicine, UC San Diego School of Medicine)

  • Aaron B. Simon

    (Moores Cancer Center, UC San Diego
    UC Irvine School of Medicine)

  • Bernard A. Fox

    (Earle A Chiles Research Institute, Robert W Franz Cancer Research Center, Providence Portland Medical Center
    Oregon Health Science University)

  • Jack D. Bui

    (Moores Cancer Center, UC San Diego
    Department of Pathology, UC San Diego School of Medicine)

  • Andrew Sharabi

    (Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego
    UC San Diego School of Medicine)

  • Ezra E. W. Cohen

    (Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego
    Division of Hematology-Oncology, UC San Diego School of Medicine)

  • Joseph A. Califano

    (Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine
    Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego)

  • J. Silvio Gutkind

    (Moores Cancer Center, UC San Diego
    Gleiberman Head and Neck Cancer Center, UC San Diego
    UC San Diego)

Abstract

Despite the promise of immune checkpoint inhibition (ICI), therapeutic responses remain limited. This raises the possibility that standard of care treatments delivered in concert may compromise the tumor response. To address this, we employ tobacco-signature head and neck squamous cell carcinoma murine models in which we map tumor-draining lymphatics and develop models for regional lymphablation with surgery or radiation. We find that lymphablation eliminates the tumor ICI response, worsening overall survival and repolarizing the tumor- and peripheral-immune compartments. Mechanistically, within tumor-draining lymphatics, we observe an upregulation of conventional type I dendritic cells and type I interferon signaling and show that both are necessary for the ICI response and lost with lymphablation. Ultimately, we provide a mechanistic understanding of how standard oncologic therapies targeting regional lymphatics impact the tumor response to immune-oncology therapy in order to define rational, lymphatic-preserving treatment sequences that mobilize systemic antitumor immunity, achieve optimal tumor responses, control regional metastatic disease, and confer durable antitumor immunity.

Suggested Citation

  • Robert Saddawi-Konefka & Aoife O’Farrell & Farhoud Faraji & Lauren Clubb & Michael M. Allevato & Shawn M. Jensen & Bryan S. Yung & Zhiyong Wang & Victoria H. Wu & Nana-Ama Anang & Riyam Al Msari & Shi, 2022. "Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31941-w
    DOI: 10.1038/s41467-022-31941-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31941-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31941-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiyong Wang & Victoria H. Wu & Michael M. Allevato & Mara Gilardi & Yudou He & Juan Luis Callejas-Valera & Lynn Vitale-Cross & Daniel Martin & Panomwat Amornphimoltham & James Mcdermott & Bryan S. Yu, 2019. "Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Nathalie Percie du Sert & Viki Hurst & Amrita Ahluwalia & Sabina Alam & Marc T Avey & Monya Baker & William J Browne & Alejandra Clark & Innes C Cuthill & Ulrich Dirnagl & Michael Emerson & Paul Garne, 2020. "The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research," PLOS Biology, Public Library of Science, vol. 18(7), pages 1-12, July.
    3. Zhiyong Wang & Yusuke Goto & Michael M. Allevato & Victoria H. Wu & Robert Saddawi-Konefka & Mara Gilardi & Diego Alvarado & Bryan S. Yung & Aoife O’Farrell & Alfredo A. Molinolo & Umamaheswar Duvvuri, 2021. "Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Inês Sequeira & Mamunur Rashid & Inês M. Tomás & Marc J. Williams & Trevor A. Graham & David J. Adams & Alessandra Vigilante & Fiona M. Watt, 2020. "Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irma Telarovic & Carmen S. M. Yong & Lisa Kurz & Irene Vetrugno & Sabrina Reichl & Alba Sanchez Fernandez & Hung-Wei Cheng & Rona Winkler & Matthias Guckenberger & Anja Kipar & Burkhard Ludewig & Mart, 2024. "Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Laurel B. Darragh & Jacob Gadwa & Tiffany T. Pham & Benjamin Court & Brooke Neupert & Nicholas A. Olimpo & Khoa Nguyen & Diemmy Nguyen & Michael W. Knitz & Maureen Hoen & Sophia Corbo & Molishree Josh, 2022. "Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dina V. Hingorani & Michael M. Allevato & Maria F. Camargo & Jacqueline Lesperance & Maryam A. Quraishi & Joseph Aguilera & Ida Franiak-Pietryga & Daniel J. Scanderbeg & Zhiyong Wang & Alfredo A. Moli, 2022. "Monomethyl auristatin antibody and peptide drug conjugates for trimodal cancer chemo-radio-immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Xiaoyi Cheng & Radwa Barakat & Giulia Pavani & Masuma Khatun Usha & Rodolfo Calderon & Elizabeth Snella & Abigail Gorden & Yudi Zhang & Paul Gadue & Deborah L. French & Karin S. Dorman & Antonella Fid, 2023. "Nod1-dependent NF-kB activation initiates hematopoietic stem cell specification in response to small Rho GTPases," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Lixiang Zhai & Haitao Xiao & Chengyuan Lin & Hoi Leong Xavier Wong & Yan Y. Lam & Mengxue Gong & Guojun Wu & Ziwan Ning & Chunhua Huang & Yijing Zhang & Chao Yang & Jingyuan Luo & Lu Zhang & Ling Zhao, 2023. "Gut microbiota-derived tryptamine and phenethylamine impair insulin sensitivity in metabolic syndrome and irritable bowel syndrome," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Karolína Ondrová & Iveta Zůvalová & Barbora Vyhlídalová & Kristýna Krasulová & Eva Miková & Radim Vrzal & Petr Nádvorník & Binod Nepal & Sandhya Kortagere & Martina Kopečná & David Kopečný & Marek Šeb, 2023. "Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. L. Tanner & A. B. Single & R. K. V. Bhongir & M. Heusel & T. Mohanty & C. A. Q. Karlsson & L. Pan & C-M. Clausson & J. Bergwik & K. Wang & C. K. Andersson & R. M. Oommen & J. S. Erjefält & J. Malmströ, 2023. "Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Victoria Ozberk & Mehfuz Zaman & Ailin Lepletier & Sharareh Eskandari & Jacqualine Kaden & Jamie-Lee Mills & Ainslie Calcutt & Jessica Dooley & Yongbao Huo & Emma L. Langshaw & Glen C. Ulett & Michael, 2023. "A Glycolipidated-liposomal peptide vaccine confers long-term mucosal protection against Streptococcus pyogenes via IL-17, macrophages and neutrophils," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. P. Bielefeld & A. Martirosyan & S. Martín-Suárez & A. Apresyan & G. F. Meerhoff & F. Pestana & S. Poovathingal & N. Reijner & W. Koning & R. A. Clement & I. Veen & E. M. Toledo & O. Polzer & I. Durá &, 2024. "Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Hirotaka Iijima & Gabrielle Gilmer & Kai Wang & Allison C. Bean & Yuchen He & Hang Lin & Wan-Yee Tang & Daniel Lamont & Chia Tai & Akira Ito & Jeffrey J. Jones & Christopher Evans & Fabrisia Ambrosio, 2023. "Age-related matrix stiffening epigenetically regulates α-Klotho expression and compromises chondrocyte integrity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Yuu Okura & Yuri Ikawa-Teranishi & Akihiko Mizoroki & Noriyuki Takahashi & Takashi Tsushima & Machiko Irie & Zulkarnain Harfuddin & Momoko Miura-Okuda & Shunsuke Ito & Genki Nakamura & Hiroaki Takesue, 2023. "Characterizations of a neutralizing antibody broadly reactive to multiple gluten peptide:HLA-DQ2.5 complexes in the context of celiac disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Lydia Teboul & James Amos-Landgraf & Fernando J. Benavides & Marie-Christine Birling & Steve D. M. Brown & Elizabeth Bryda & Rosie Bunton-Stasyshyn & Hsian-Jean Chin & Martina Crispo & Fabien Delerue , 2024. "Improving laboratory animal genetic reporting: LAG-R guidelines," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Caihua Zhang & Kang Li & Hongzhang Zhu & Maosheng Cheng & Shuang Chen & Rongsong Ling & Cheng Wang & Demeng Chen, 2024. "ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4+ macrophage infiltration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    12. Clyde A. Campbell & Rodolfo Calderon & Giulia Pavani & Xiaoyi Cheng & Radwa Barakat & Elizabeth Snella & Fang Liu & Xiyu Peng & Jeffrey J. Essner & Karin S. Dorman & Maura McGrail & Paul Gadue & Debor, 2024. "p65 signaling dynamics drive the developmental progression of hematopoietic stem and progenitor cells through cell cycle regulation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    13. Dinh-Huy Nguyen & Sung-Hwan You & Hien Thi-Thu Ngo & Khuynh Nguyen & Khang Vuong Tran & Tan-Huy Chu & So-young Kim & Sang-Jun Ha & Yeongjin Hong & Jung-Joon Min, 2024. "Reprogramming the tumor immune microenvironment using engineered dual-drug loaded Salmonella," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31941-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.