IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51873-x.html
   My bibliography  Save this article

IL36G-producing neutrophil-like monocytes promote cachexia in cancer

Author

Listed:
  • Yoshihiro Hayashi

    (Tokyo University of Pharmacy and Life Sciences
    Ritsumeikan University)

  • Yasushige Kamimura-Aoyagi

    (Tokyo University of Pharmacy and Life Sciences)

  • Sayuri Nishikawa

    (Tokyo University of Pharmacy and Life Sciences)

  • Rena Noka

    (Tokyo University of Pharmacy and Life Sciences)

  • Rika Iwata

    (Tokyo University of Pharmacy and Life Sciences)

  • Asami Iwabuchi

    (Tokyo University of Pharmacy and Life Sciences)

  • Yushin Watanabe

    (Tokyo University of Pharmacy and Life Sciences)

  • Natsumi Matsunuma

    (Tokyo University of Pharmacy and Life Sciences)

  • Kanako Yuki

    (Tokyo University of Pharmacy and Life Sciences)

  • Hiroki Kobayashi

    (Tokyo University of Pharmacy and Life Sciences)

  • Yuka Harada

    (Komagome Hospital)

  • Hironori Harada

    (Tokyo University of Pharmacy and Life Sciences)

Abstract

Most patients with advanced cancer develop cachexia, a multifactorial syndrome characterized by progressive skeletal muscle wasting. Despite its catastrophic impact on survival, the critical mediators responsible for cancer cachexia development remain poorly defined. Here, we show that a distinct subset of neutrophil-like monocytes, which we term cachexia-inducible monocytes (CiMs), emerges in the advanced cancer milieu and promotes skeletal muscle loss. Unbiased transcriptome analysis reveals that interleukin 36 gamma (IL36G)-producing CD38+ CiMs are induced in chronic monocytic blood cancer characterized by prominent cachexia. Notably, the emergence of CiMs and the activation of CiM-related gene signatures in monocytes are confirmed in various advanced solid cancers. Stimuli of toll-like receptor 4 signaling are responsible for the induction of CiMs. Genetic inhibition of IL36G-mediated signaling attenuates skeletal muscle loss and rescues cachexia phenotypes in advanced cancer models. These findings indicate that the IL36G-producing subset of neutrophil-like monocytes could be a potential therapeutic target in cancer cachexia.

Suggested Citation

  • Yoshihiro Hayashi & Yasushige Kamimura-Aoyagi & Sayuri Nishikawa & Rena Noka & Rika Iwata & Asami Iwabuchi & Yushin Watanabe & Natsumi Matsunuma & Kanako Yuki & Hiroki Kobayashi & Yuka Harada & Hirono, 2024. "IL36G-producing neutrophil-like monocytes promote cachexia in cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51873-x
    DOI: 10.1038/s41467-024-51873-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51873-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51873-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eirini Giannoudaki & Yasmina E. Hernandez-Santana & Kelly Mulfaul & Sarah L. Doyle & Emily Hams & Padraic G. Fallon & Arimin Mat & Donal O’Shea & Manfred Kopf & Andrew E. Hogan & Patrick T. Walsh, 2019. "Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    2. Barbara Maier & Andrew M. Leader & Steven T. Chen & Navpreet Tung & Christie Chang & Jessica LeBerichel & Aleksey Chudnovskiy & Shrisha Maskey & Laura Walker & John P. Finnigan & Margaret E. Kirkling , 2020. "A conserved dendritic-cell regulatory program limits antitumour immunity," Nature, Nature, vol. 580(7802), pages 257-262, April.
    3. Yong Hu & Liu Liu & Yong Chen & Xiaohui Zhang & Haifeng Zhou & Sheng Hu & Xu Li & Meixin Li & Juanjuan Li & Siyuan Cheng & Yong Liu & Yancheng Xu & Wei Yan, 2023. "Cancer-cell-secreted miR-204-5p induces leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Beom Seok Park & Dong Hyun Song & Ho Min Kim & Byong-Seok Choi & Hayyoung Lee & Jie-Oh Lee, 2009. "The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex," Nature, Nature, vol. 458(7242), pages 1191-1195, April.
    5. Andre Olsson & Meenakshi Venkatasubramanian & Viren K. Chaudhri & Bruce J. Aronow & Nathan Salomonis & Harinder Singh & H. Leighton Grimes, 2016. "Single-cell analysis of mixed-lineage states leading to a binary cell fate choice," Nature, Nature, vol. 537(7622), pages 698-702, September.
    6. Barbara Maier & Andrew M. Leader & Steven T. Chen & Navpreet Tung & Christie Chang & Jessica LeBerichel & Aleksey Chudnovskiy & Shrisha Maskey & Laura Walker & John P. Finnigan & Margaret E. Kirkling , 2020. "Author Correction: A conserved dendritic-cell regulatory program limits antitumour immunity," Nature, Nature, vol. 582(7813), pages 17-17, June.
    7. Marco Segatto & Raffaella Fittipaldi & Fabrizio Pin & Roberta Sartori & Kyung Dae Ko & Hossein Zare & Claudio Fenizia & Gianpietro Zanchettin & Elisa Sefora Pierobon & Shinji Hatakeyama & Cosimo Spert, 2017. "Epigenetic targeting of bromodomain protein BRD4 counteracts cancer cachexia and prolongs survival," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Xia & Anastasia Komissarova & Arielle Jacover & Yehuda Shovman & Sebastian Arcila-Barrera & Sharona Tornovsky-Babeay & Milsee Mol Jaya Prakashan & Abdelmajeed Nasereddin & Inbar Plaschkes & Yuval , 2023. "Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Thillai V. Sekar & Eslam A. Elghonaimy & Katy L. Swancutt & Sebastian Diegeler & Isaac Gonzalez & Cassandra Hamilton & Peter Q. Leung & Jens Meiler & Cristina E. Martina & Michael Whitney & Todd A. Ag, 2023. "Simultaneous selection of nanobodies for accessible epitopes on immune cells in the tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Sandra Tietscher & Johanna Wagner & Tobias Anzeneder & Claus Langwieder & Martin Rees & Bettina Sobottka & Natalie Souza & Bernd Bodenmiller, 2023. "A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Caroline Hoffmann & Floriane Noel & Maximilien Grandclaudon & Lucile Massenet-Regad & Paula Michea & Philemon Sirven & Lilith Faucheux & Aurore Surun & Olivier Lantz & Mylene Bohec & Jian Ye & Weihua , 2022. "PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. Lucía López & Luciano Gastón Morosi & Federica Terza & Pierre Bourdely & Giuseppe Rospo & Roberto Amadio & Giulia Maria Piperno & Valentina Russo & Camilla Volponi & Simone Vodret & Sonal Joshi & Fran, 2024. "Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Egle Kvedaraite & Magda Lourda & Natalia Mouratidou & Tim Düking & Avinash Padhi & Kirsten Moll & Paulo Czarnewski & Indranil Sinha & Ioanna Xagoraris & Efthymia Kokkinou & Anastasios Damdimopoulos & , 2024. "Intestinal stroma guides monocyte differentiation to macrophages through GM-CSF," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Eduardo Moreo & Aitor Jarit-Cabanillas & Iñaki Robles-Vera & Santiago Uranga & Claudia Guerrero & Ana Belén Gómez & Pablo Mata-Martínez & Luna Minute & Miguel Araujo-Voces & María José Felgueres & Glo, 2023. "Intravenous administration of BCG in mice promotes natural killer and T cell-mediated antitumor immunity in the lung," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Matthew A. Cottam & Heather L. Caslin & Nathan C. Winn & Alyssa H. Hasty, 2022. "Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. E. L. Houlder & A. H. Costain & I. Nambuya & S. L. Brown & J. P. R. Koopman & M. C. C. Langenberg & J. J. Janse & M. A. Hoogerwerf & A. J. L. Ridley & J. E. Forde-Thomas & S. A. P. Colombo & B. M. F. , 2023. "Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Lilong Liu & Yaxin Hou & Changqi Deng & Zhen Tao & Zhaohui Chen & Junyi Hu & Ke Chen, 2022. "Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Colin Y. C. Lee & Bethany C. Kennedy & Nathan Richoz & Isaac Dean & Zewen K. Tuong & Fabrina Gaspal & Zhi Li & Claire Willis & Tetsuo Hasegawa & Sarah K. Whiteside & David A. Posner & Gianluca Carless, 2024. "Tumour-retained activated CCR7+ dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Yunpei Xu & Shaokai Wang & Qilong Feng & Jiazhi Xia & Yaohang Li & Hong-Dong Li & Jianxin Wang, 2024. "scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    13. Xin Lei & Indu Khatri & Tom Wit & Iris Rink & Marja Nieuwland & Ron Kerkhoven & Hans Eenennaam & Chong Sun & Abhishek D. Garg & Jannie Borst & Yanling Xiao, 2023. "CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Anna-Lena Geiselhöringer & Daphne Kolland & Arisha Johanna Patt & Linda Hammann & Amelie Köhler & Luisa Kreft & Nina Wichmann & Miriam Hils & Christiane Ruedl & Marc Riemann & Tilo Biedermann & David , 2024. "Dominant immune tolerance in the intestinal tract imposed by RelB-dependent migratory dendritic cells regulates protective type 2 immunity," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Rani Pallavi & Elena Gatti & Tiphanie Durfort & Massimo Stendardo & Roberto Ravasio & Tommaso Leonardi & Paolo Falvo & Bruno Achutti Duso & Simona Punzi & Aobuli Xieraili & Andrea Polazzi & Doriana Ve, 2024. "Caloric restriction leads to druggable LSD1-dependent cancer stem cells expansion," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Kadi J. Horn & Melissa A. Schopper & Zoe G. Drigot & Sarah E. Clark, 2022. "Airway Prevotella promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumoniae from the lung," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Martin Boström & Erik Larsson, 2022. "Somatic mutation distribution across tumour cohorts provides a signal for positive selection in cancer," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Rowan D Brackston & Eszter Lakatos & Michael P H Stumpf, 2018. "Transition state characteristics during cell differentiation," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-24, September.
    19. Carsten Eriksen & Janne Marie Moll & Pernille Neve Myers & Ana Rosa Almeida Pinto & Niels Banhos Danneskiold-Samsøe & Rasmus Ibsen Dehli & Lisbeth Buus Rosholm & Marlene Danner Dalgaard & John Penders, 2023. "IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Aidan M. Fenix & Yuichiro Miyaoka & Alessandro Bertero & Steven M. Blue & Matthew J. Spindler & Kenneth K. B. Tan & Juan A. Perez-Bermejo & Amanda H. Chan & Steven J. Mayerl & Trieu D. Nguyen & Caitli, 2021. "Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies," Nature Communications, Nature, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51873-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.