IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35615-5.html
   My bibliography  Save this article

CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment

Author

Listed:
  • Xin Lei

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Indu Khatri

    (Leiden University Medical Center)

  • Tom Wit

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Iris Rink

    (The Netherlands Cancer Institute)

  • Marja Nieuwland

    (The Netherlands Cancer Institute)

  • Ron Kerkhoven

    (The Netherlands Cancer Institute)

  • Hans Eenennaam

    (Aduro Biotech Europe B.V)

  • Chong Sun

    (German Cancer Research Center)

  • Abhishek D. Garg

    (Department of Cellular & Molecular Medicine)

  • Jannie Borst

    (Leiden University Medical Center
    Leiden University Medical Center)

  • Yanling Xiao

    (Leiden University Medical Center
    Leiden University Medical Center)

Abstract

Despite their low abundance in the tumor microenvironment (TME), classical type 1 dendritic cells (cDC1) play a pivotal role in anti-cancer immunity, and their abundance positively correlates with patient survival. However, their interaction with CD4+ T-cells to potentially enable the cytotoxic T lymphocyte (CTL) response has not been elucidated. Here we show that contact with activated CD4+ T-cells enables human ex vivo cDC1, but no other DC types, to induce a CTL response to cell-associated tumor antigens. Single cell transcriptomics reveals that CD4+ T-cell help uniquely optimizes cDC1 in many functions that support antigen cross-presentation and T-cell priming, while these changes don’t apply to other DC types. We robustly identify “helped” cDC1 in the TME of a multitude of human cancer types by the overlap in their transcriptomic signature with that of recently defined, tumor-infiltrating DC states that prove to be positively prognostic. As predicted from the functional effects of CD4+ T-cell help, the transcriptomic signature of “helped” cDC1 correlates with tumor infiltration by CTLs and Thelper(h)−1 cells, overall survival and response to PD-1-targeting immunotherapy. These findings reveal a critical role for CD4+ T-cell help in enabling cDC1 function in the TME and may establish the helped cDC1 transcriptomic signature as diagnostic marker in cancer.

Suggested Citation

  • Xin Lei & Indu Khatri & Tom Wit & Iris Rink & Marja Nieuwland & Ron Kerkhoven & Hans Eenennaam & Chong Sun & Abhishek D. Garg & Jannie Borst & Yanling Xiao, 2023. "CD4+ helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35615-5
    DOI: 10.1038/s41467-022-35615-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35615-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35615-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barbara Maier & Andrew M. Leader & Steven T. Chen & Navpreet Tung & Christie Chang & Jessica LeBerichel & Aleksey Chudnovskiy & Shrisha Maskey & Laura Walker & John P. Finnigan & Margaret E. Kirkling , 2020. "A conserved dendritic-cell regulatory program limits antitumour immunity," Nature, Nature, vol. 580(7802), pages 257-262, April.
    2. Stephen T. Ferris & Vivek Durai & Renee Wu & Derek J. Theisen & Jeffrey P. Ward & Michael D. Bern & Jesse T. Davidson & Prachi Bagadia & Tiantian Liu & Carlos G. Briseño & Lijin Li & William E. Gillan, 2020. "cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity," Nature, Nature, vol. 584(7822), pages 624-629, August.
    3. Barbara Maier & Andrew M. Leader & Steven T. Chen & Navpreet Tung & Christie Chang & Jessica LeBerichel & Aleksey Chudnovskiy & Shrisha Maskey & Laura Walker & John P. Finnigan & Margaret E. Kirkling , 2020. "Author Correction: A conserved dendritic-cell regulatory program limits antitumour immunity," Nature, Nature, vol. 582(7813), pages 17-17, June.
    4. Sonia Feau & Zacarias Garcia & Ramon Arens & Hideo Yagita & Jannie Borst & Stephen P. Schoenberger, 2012. "The CD4+ T-cell help signal is transmitted from APC to CD8+ T-cells via CD27–CD70 interactions," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
    5. Andreas Blees & Dovile Januliene & Tommy Hofmann & Nicole Koller & Carla Schmidt & Simon Trowitzsch & Arne Moeller & Robert Tampé, 2017. "Structure of the human MHC-I peptide-loading complex," Nature, Nature, vol. 551(7681), pages 525-528, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucía López & Luciano Gastón Morosi & Federica Terza & Pierre Bourdely & Giuseppe Rospo & Roberto Amadio & Giulia Maria Piperno & Valentina Russo & Camilla Volponi & Simone Vodret & Sonal Joshi & Fran, 2024. "Dendritic cell-targeted therapy expands CD8 T cell responses to bona-fide neoantigens in lung tumors," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Lei Xia & Anastasia Komissarova & Arielle Jacover & Yehuda Shovman & Sebastian Arcila-Barrera & Sharona Tornovsky-Babeay & Milsee Mol Jaya Prakashan & Abdelmajeed Nasereddin & Inbar Plaschkes & Yuval , 2023. "Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Thillai V. Sekar & Eslam A. Elghonaimy & Katy L. Swancutt & Sebastian Diegeler & Isaac Gonzalez & Cassandra Hamilton & Peter Q. Leung & Jens Meiler & Cristina E. Martina & Michael Whitney & Todd A. Ag, 2023. "Simultaneous selection of nanobodies for accessible epitopes on immune cells in the tumor microenvironment," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Sandra Tietscher & Johanna Wagner & Tobias Anzeneder & Claus Langwieder & Martin Rees & Bettina Sobottka & Natalie Souza & Bernd Bodenmiller, 2023. "A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    5. Caroline Hoffmann & Floriane Noel & Maximilien Grandclaudon & Lucile Massenet-Regad & Paula Michea & Philemon Sirven & Lilith Faucheux & Aurore Surun & Olivier Lantz & Mylene Bohec & Jian Ye & Weihua , 2022. "PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Egle Kvedaraite & Magda Lourda & Natalia Mouratidou & Tim Düking & Avinash Padhi & Kirsten Moll & Paulo Czarnewski & Indranil Sinha & Ioanna Xagoraris & Efthymia Kokkinou & Anastasios Damdimopoulos & , 2024. "Intestinal stroma guides monocyte differentiation to macrophages through GM-CSF," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Eduardo Moreo & Aitor Jarit-Cabanillas & Iñaki Robles-Vera & Santiago Uranga & Claudia Guerrero & Ana Belén Gómez & Pablo Mata-Martínez & Luna Minute & Miguel Araujo-Voces & María José Felgueres & Glo, 2023. "Intravenous administration of BCG in mice promotes natural killer and T cell-mediated antitumor immunity in the lung," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Matthew A. Cottam & Heather L. Caslin & Nathan C. Winn & Alyssa H. Hasty, 2022. "Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. E. L. Houlder & A. H. Costain & I. Nambuya & S. L. Brown & J. P. R. Koopman & M. C. C. Langenberg & J. J. Janse & M. A. Hoogerwerf & A. J. L. Ridley & J. E. Forde-Thomas & S. A. P. Colombo & B. M. F. , 2023. "Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Yoshihiro Hayashi & Yasushige Kamimura-Aoyagi & Sayuri Nishikawa & Rena Noka & Rika Iwata & Asami Iwabuchi & Yushin Watanabe & Natsumi Matsunuma & Kanako Yuki & Hiroki Kobayashi & Yuka Harada & Hirono, 2024. "IL36G-producing neutrophil-like monocytes promote cachexia in cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Lilong Liu & Yaxin Hou & Changqi Deng & Zhen Tao & Zhaohui Chen & Junyi Hu & Ke Chen, 2022. "Single cell sequencing reveals that CD39 inhibition mediates changes to the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Colin Y. C. Lee & Bethany C. Kennedy & Nathan Richoz & Isaac Dean & Zewen K. Tuong & Fabrina Gaspal & Zhi Li & Claire Willis & Tetsuo Hasegawa & Sarah K. Whiteside & David A. Posner & Gianluca Carless, 2024. "Tumour-retained activated CCR7+ dendritic cells are heterogeneous and regulate local anti-tumour cytolytic activity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Yunpei Xu & Shaokai Wang & Qilong Feng & Jiazhi Xia & Yaohang Li & Hong-Dong Li & Jianxin Wang, 2024. "scCAD: Cluster decomposition-based anomaly detection for rare cell identification in single-cell expression data," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    14. Jae Eun Choi & Yuanyuan Qiao & Ilona Kryczek & Jiali Yu & Jonathan Gurkan & Yi Bao & Mahnoor Gondal & Jean Ching-Yi Tien & Tomasz Maj & Sahr Yazdani & Abhijit Parolia & Houjun Xia & JiaJia Zhou & Shua, 2024. "PIKfyve, expressed by CD11c-positive cells, controls tumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Ines Katharina Müller & Christian Winter & Christoph Thomas & Robbert M. Spaapen & Simon Trowitzsch & Robert Tampé, 2022. "Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Denise Lau & Sonal Khare & Michelle M. Stein & Prerna Jain & Yinjie Gao & Aicha BenTaieb & Tim A. Rand & Ameen A. Salahudeen & Aly A. Khan, 2022. "Integration of tumor extrinsic and intrinsic features associates with immunotherapy response in non-small cell lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Diego Calzada-Fraile & Salvador Iborra & Marta Ramírez-Huesca & Inmaculada Jorge & Enrico Dotta & Elena Hernández-García & Noa Martín-Cófreces & Estanislao Nistal-Villán & Esteban Veiga & Jesús Vázque, 2023. "Immune synapse formation promotes lipid peroxidation and MHC-I upregulation in licensed dendritic cells for efficient priming of CD8+ T cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Kieran English & Rain Kwan & Lauren E. Holz & Claire McGuffog & Jelte M. M. Krol & Daryan Kempe & Tsuneyasu Kaisho & William R. Heath & Leszek Lisowski & Maté Biro & Geoffrey W. McCaughan & David G. B, 2024. "A hepatic network of dendritic cells mediates CD4 T cell help outside lymphoid organs," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Jiansheng Jiang & Daniel K. Taylor & Ellen J. Kim & Lisa F. Boyd & Javeed Ahmad & Michael G. Mage & Hau V. Truong & Claire H. Woodward & Nikolaos G. Sgourakis & Peter Cresswell & David H. Margulies & , 2022. "Structural mechanism of tapasin-mediated MHC-I peptide loading in antigen presentation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Alexander Domnick & Christian Winter & Lukas Sušac & Leon Hennecke & Mario Hensen & Nicole Zitzmann & Simon Trowitzsch & Christoph Thomas & Robert Tampé, 2022. "Molecular basis of MHC I quality control in the peptide loading complex," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35615-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.