IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51700-3.html
   My bibliography  Save this article

Bio-integrated carbon capture and utilization: at the interface between capture chemistry and archaeal CO2 reduction

Author

Listed:
  • Mads Ujarak Sieborg

    (Aarhus University)

  • Amalie Kirstine Hessellund Nielsen

    (Aarhus University
    Aarhus University)

  • Lars Ditlev Mørck Ottosen

    (Aarhus University
    Aarhus University)

  • Kim Daasbjerg

    (Aarhus University
    Aarhus University
    Interdisciplinary Nanoscience Center (iNANO))

  • Michael Vedel Wegener Kofoed

    (Aarhus University
    Aarhus University)

Abstract

Carbon capture and utilization (CCU) covers an array of technologies for valorizing carbon dioxide (CO2). To date, most mature CCU technology conducted with capture agents operates against the CO2 gradient to desorb CO2 from capture agents, exhibiting high energy penalties and thermal degradation due to the requirement for thermal swings. This Perspective presents a concept of Bio-Integrated Carbon Capture and Utilization (BICCU), which utilizes methanogens for integrated release and conversion of CO2 captured with capture agents. BICCU hereby substitutes the energy-intensive desorption with microbial conversion of captured CO2 by the methanogenic CO2-reduction pathway, utilizing green hydrogen to generate non-fossil methane.

Suggested Citation

  • Mads Ujarak Sieborg & Amalie Kirstine Hessellund Nielsen & Lars Ditlev Mørck Ottosen & Kim Daasbjerg & Michael Vedel Wegener Kofoed, 2024. "Bio-integrated carbon capture and utilization: at the interface between capture chemistry and archaeal CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51700-3
    DOI: 10.1038/s41467-024-51700-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51700-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51700-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
    2. Farzan Kazemifar, 2022. "A review of technologies for carbon capture, sequestration, and utilization: Cost, capacity, and technology readiness," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 200-230, February.
    3. Yu, Bing & Yu, Hai & Li, Kangkang & Yang, Qi & Zhang, Rui & Li, Lichun & Chen, Zuliang, 2017. "Characterisation and kinetic study of carbon dioxide absorption by an aqueous diamine solution," Applied Energy, Elsevier, vol. 208(C), pages 1308-1317.
    4. Asimakopoulos, Konstantinos & Kaufmann-Elfang, Martin & Lundholm-Høffner, Christoffer & Rasmussen, Niels B.K. & Grimalt-Alemany, Antonio & Gavala, Hariklia N. & Skiadas, Ioannis V., 2021. "Scale up study of a thermophilic trickle bed reactor performing syngas biomethanation," Applied Energy, Elsevier, vol. 290(C).
    5. Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciuła, Józef & Generowicz, Agnieszka & Gronba-Chyła, Anna & Kwaśnicki, Paweł & Makara, Agnieszka & Kowalski, Zygmunt & Wiewiórska, Iwona, 2024. "Energy production from landfill gas, emissions and pollution indicators–Opportunities and barriers to implementing circular economy," Energy, Elsevier, vol. 308(C).
    2. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    3. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    4. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    5. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    6. Yuhan Zhang & Yongbin Wang & Zhibin Chen & Chengzhi Hu & Jiuhui Qu, 2024. "Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Silverman, Rochelle E. & Flores, Robert J. & Brouwer, Jack, 2020. "Energy and economic assessment of distributed renewable gas and electricity generation in a small disadvantaged urban community," Applied Energy, Elsevier, vol. 280(C).
    8. An, Shanlong & Li, Nuo & Huang, Xin & Yuan, Bingling & Li, Qiangwei & Xing, Lei & Wang, Rujie & Qi, Tieyue & Wang, Lidong, 2024. "Ethyl levulinate regulates traditional sulfolane biphasic absorbent for energy-efficient CO2 capture," Energy, Elsevier, vol. 312(C).
    9. Hou, Rui & Zhang, Nachuan & Yang, Chengsheng & Zhao, Jing & Li, Peng & Sun, Bo, 2023. "A novel structure of natural gas, electricity, and methanol production using a combined reforming cycle: Integration of biogas upgrading, liquefied natural gas re-gasification, power plant, and methan," Energy, Elsevier, vol. 270(C).
    10. Apoorva Upadhyay & Andrey A. Kovalev & Elena A. Zhuravleva & Dmitriy A. Kovalev & Yuriy V. Litti & Shyam Kumar Masakapalli & Nidhi Pareek & Vivekanand Vivekanand, 2022. "Recent Development in Physical, Chemical, Biological and Hybrid Biogas Upgradation Techniques," Sustainability, MDPI, vol. 15(1), pages 1-30, December.
    11. Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
    12. Philipp Biegger & Florian Kirchbacher & Ana Roza Medved & Martin Miltner & Markus Lehner & Michael Harasek, 2018. "Development of Honeycomb Methanation Catalyst and Its Application in Power to Gas Systems," Energies, MDPI, vol. 11(7), pages 1-17, June.
    13. Ma, Chunyan & Xie, Yujiao & Ji, Xiaoyan & Liu, Chang & Lu, Xiaohua, 2018. "Modeling, simulation and evaluation of biogas upgrading using aqueous choline chloride/urea," Applied Energy, Elsevier, vol. 229(C), pages 1269-1283.
    14. Ding, Lingkan & Chan Gutierrez, Enrique & Cheng, Jun & Xia, Ao & O'Shea, Richard & Guneratnam, Amita Jacob & Murphy, Jerry D., 2018. "Assessment of continuous fermentative hydrogen and methane co-production using macro- and micro-algae with increasing organic loading rate," Energy, Elsevier, vol. 151(C), pages 760-770.
    15. Bugra Arda Zincir & Burak Zincir & Cengiz Deniz & Hasan Bora Usluer & Yasin Arslanoglu, 2024. "Environmental impact investigation of combined CCS and SCR on a ship by a case study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 14(4), pages 607-619, August.
    16. Díaz, Israel & Fdz-Polanco, Fernando & Mutsvene, Boldwin & Fdz-Polanco, María, 2020. "Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge," Applied Energy, Elsevier, vol. 280(C).
    17. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    18. Ardolino, F. & Cardamone, G.F. & Parrillo, F. & Arena, U., 2021. "Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    19. Tikoudis, Ioannis & Mebiame, Rose Mba & Oueslati, Walid, 2023. "Projecting the fuel efficiency of conventional vehicles: CAFE regulations, gasoline taxes and autonomous technical change," Energy Policy, Elsevier, vol. 183(C).
    20. Zang, Xiaoya & Wan, Lihua & He, Yong & Liang, Deqing, 2020. "CO2 removal from synthesized ternary gas mixtures used hydrate formation with sodium dodecyl sulfate(SDS) as additive," Energy, Elsevier, vol. 190(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51700-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.