IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51567-4.html
   My bibliography  Save this article

Femtosecond laser writing of ant-inspired reconfigurable microbot collectives

Author

Listed:
  • Zhongguo Ren

    (University of Science and Technology of China)

  • Chen Xin

    (University of Science and Technology of China
    The Chinese University of Hong Kong)

  • Kaiwen Liang

    (University of Science and Technology of China)

  • Heming Wang

    (University of Science and Technology of China)

  • Dawei Wang

    (University of Science and Technology of China)

  • Liqun Xu

    (University of Science and Technology of China)

  • Yanlei Hu

    (University of Science and Technology of China)

  • Jiawen Li

    (University of Science and Technology of China)

  • Jiaru Chu

    (University of Science and Technology of China)

  • Dong Wu

    (University of Science and Technology of China)

Abstract

Microbot collectives can cooperate to accomplish complex tasks that are difficult for a single individual. However, various force-induced microbot collectives maintained by weak magnetic, light, and electric fields still face challenges such as unstable connections, the need for a continuous external stimuli source, and imprecise individual control. Here, we construct magnetic and light-driven ant microbot collectives capable of reconfiguring multiple assembled architectures with robustness. This methodology utilizes a flexible two-photon polymerization strategy to fabricate microbots consisting of magnetic photoresist, hydrogel, and metal nanoparticles. Under the cooperation of magnetic and light fields, the microbots can reversibly and selectively assemble (e.g., 90° assembly and 180° assembly) into various morphologies. Moreover, we demonstrate the ability of assembled microbots to cross a one-body-length gap and their adaptive capability to move through a constriction and transport microcargo. Our strategy will broaden the abilities of clustered microbots, including gap traversal, micro-object manipulation, and drug delivery.

Suggested Citation

  • Zhongguo Ren & Chen Xin & Kaiwen Liang & Heming Wang & Dawei Wang & Liqun Xu & Yanlei Hu & Jiawen Li & Jiaru Chu & Dong Wu, 2024. "Femtosecond laser writing of ant-inspired reconfigurable microbot collectives," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51567-4
    DOI: 10.1038/s41467-024-51567-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51567-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51567-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takao Sasaki & Dora Biro, 2017. "Cumulative culture can emerge from collective intelligence in animal groups," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    2. Jakub Janiak & Yuyang Li & Yann Ferry & Alexander A. Doinikov & Daniel Ahmed, 2023. "Acoustic microbubble propulsion, train-like assembly and cargo transport," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Aviram Gelblum & Itai Pinkoviezky & Ehud Fonio & Abhijit Ghosh & Nir Gov & Ofer Feinerman, 2015. "Ant groups optimally amplify the effect of transiently informed individuals," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    4. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. S. Tasoglu & E. Diller & S. Guven & M. Sitti & U. Demirci, 2014. "Untethered micro-robotic coding of three-dimensional material composition," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    6. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Marc Hippler & Eva Blasco & Jingyuan Qu & Motomu Tanaka & Christopher Barner-Kowollik & Martin Wegener & Martin Bastmeyer, 2019. "Controlling the shape of 3D microstructures by temperature and light," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    8. Jiangfan Yu & Dongdong Jin & Kai-Fung Chan & Qianqian Wang & Ke Yuan & Li Zhang, 2019. "Active generation and magnetic actuation of microrobotic swarms in bio-fluids," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    9. Zhiming Hu & Wei Fang & Qunyang Li & Xi-Qiao Feng & Jiu-an Lv, 2020. "Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    10. Jiangfan Yu & Ben Wang & Xingzhou Du & Qianqian Wang & Li Zhang, 2018. "Ultra-extensible ribbon-like magnetic microswarm," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Xiong Yang & Rong Tan & Haojian Lu & Toshio Fukuda & Yajing Shen, 2022. "Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. K. S. Vikrant & G. R. Jayanth, 2022. "Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Heather Williams & Andrew Scharf & Anna R. Ryba & D. Ryan Norris & Daniel J. Mennill & Amy E. M. Newman & Stéphanie M. Doucet & Julie C. Blackwood, 2022. "Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Thibaud Gruber & Lydia Luncz & Julia Mörchen & Caroline Schuppli & Rachel L. Kendal & Kimberley Hockings, 2019. "Cultural change in animals: a flexible behavioural adaptation to human disturbance," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    7. James Winters, 2019. "Escaping optimization traps: the role of cultural adaptation and cultural exaptation in facilitating open-ended cumulative dynamics," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-13, December.
    8. Matej Bobnar & Nikita Derets & Saide Umerova & Valentina Domenici & Nikola Novak & Marta Lavrič & George Cordoyiannis & Boštjan Zalar & Andraž Rešetič, 2023. "Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Minghui Tan & Pan Tian & Qian Zhang & Guiqiang Zhu & Yuchen Liu & Mengjiao Cheng & Feng Shi, 2022. "Self-sorting in macroscopic supramolecular self-assembly via additive effects of capillary and magnetic forces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Jonathan E Ron & Itai Pinkoviezky & Ehud Fonio & Ofer Feinerman & Nir S Gov, 2018. "Bi-stability in cooperative transport by ants in the presence of obstacles," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-21, May.
    11. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Patrik Byholm & Martin Beal & Natalie Isaksson & Ulrik Lötberg & Susanne Åkesson, 2022. "Paternal transmission of migration knowledge in a long-distance bird migrant," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Edwin J. C. Leeuwen & Sarah E. DeTroy & Daniel B. M. Haun & Josep Call, 2024. "Chimpanzees use social information to acquire a skill they fail to innovate," Nature Human Behaviour, Nature, vol. 8(5), pages 891-902, May.
    14. Pascal P Klamser & Pawel Romanczuk, 2021. "Collective predator evasion: Putting the criticality hypothesis to the test," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.
    15. Shuqin Chen & Xander Peetroons & Anna C. Bakenecker & Florencia Lezcano & Igor S. Aranson & Samuel Sánchez, 2024. "Collective buoyancy-driven dynamics in swarming enzymatic nanomotors," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Guibin Sun & Rui Zhou & Zhao Ma & Yongqi Li & Roderich Groß & Zhang Chen & Shiyu Zhao, 2023. "Mean-shift exploration in shape assembly of robot swarms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Jayraj V. Vaghasiya & Carmen C. Mayorga-Martinez & Stanislava Matějková & Martin Pumera, 2022. "Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Nik, Vahid M. & Hosseini, Mohammad, 2023. "CIRLEM: a synergic integration of Collective Intelligence and Reinforcement learning in Energy Management for enhanced climate resilience and lightweight computation," Applied Energy, Elsevier, vol. 350(C).
    20. E. Reindl & A. L. Gwilliams & L. G. Dean & R. L. Kendal & C. Tennie, 2020. "Skills and motivations underlying children’s cumulative cultural learning: case not closed," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51567-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.