IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51518-z.html
   My bibliography  Save this article

Comprehensive modeling of corkscrew motion in micro-/nano-robots with general helical structures

Author

Listed:
  • Ningning Hu

    (Shanghai University)

  • Lujia Ding

    (University of Saskatchewan)

  • Aihui Wang

    (Zhongyuan University of Technology)

  • Wenju Zhou

    (Shanghai University)

  • Chris Zhang

    (University of Saskatchewan)

  • Bing Zhang

    (Shanghai University)

  • Ruixue Yin

    (East China University of Science and Technology)

Abstract

Micro-/nano-robots (MNRs) have impressive potential in minimally invasive targeted therapeutics through blood vessels, which has disruptive impact to improving human health. However, the clinical use of MNRs has yet to happen due to intrinsic limitations, such as overcoming blood flow. These bottlenecks have not been empirically solved. To tackle them, a full understanding of MNR behaviors is necessary as the first step. The common movement principle of MNRs is corkscrew motion with a helical structure. The existing dynamic model is only applicable to standard helical MNRs. In this paper, we propose a dynamic model for general MNRs without structure limitations. Comprehensive simulations and experiments were conducted, which shows the validity and accuracy of our model. Such a model can serve as a reliable basis for the design, optimization, and control of MNRs and as a powerful tool for gaining fluid dynamic insights, thus accelerating the development of the field.

Suggested Citation

  • Ningning Hu & Lujia Ding & Aihui Wang & Wenju Zhou & Chris Zhang & Bing Zhang & Ruixue Yin, 2024. "Comprehensive modeling of corkscrew motion in micro-/nano-robots with general helical structures," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51518-z
    DOI: 10.1038/s41467-024-51518-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51518-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51518-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen Xin & Zhongguo Ren & Leran Zhang & Liang Yang & Dawei Wang & Yanlei Hu & Jiawen Li & Jiaru Chu & Li Zhang & Dong Wu, 2023. "Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongguo Ren & Chen Xin & Kaiwen Liang & Heming Wang & Dawei Wang & Liqun Xu & Yanlei Hu & Jiawen Li & Jiaru Chu & Dong Wu, 2024. "Femtosecond laser writing of ant-inspired reconfigurable microbot collectives," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51518-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.