IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05749-6.html
   My bibliography  Save this article

Ultra-extensible ribbon-like magnetic microswarm

Author

Listed:
  • Jiangfan Yu

    (The Chinese University of Hong Kong)

  • Ben Wang

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Xingzhou Du

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong
    The Chinese University of Hong Kong)

  • Qianqian Wang

    (The Chinese University of Hong Kong)

  • Li Zhang

    (The Chinese University of Hong Kong
    The Chinese University of Hong Kong
    The Chinese University of Hong Kong
    the Chinese University of Hong Kong)

Abstract

Various types of structures self-organised by animals exist in nature, such as bird flocks and insect swarms, which stem from the local communications of vast numbers of limited individuals. Through the designing of algorithms and wireless communication, robotic systems can emulate some complex swarm structures in nature. However, creating a swarming robotic system at the microscale that embodies functional collective behaviours remains a challenge. Herein, we report a strategy to reconfigure paramagnetic nanoparticles into ribbon-like swarms using oscillating magnetic fields, and the mechanisms are analysed. By tuning the input fields, the microswarm can perform a reversible elongation with an extremely high aspect ratio, as well as splitting and merging. Moreover, we investigate the behaviours of the microswarm when it encounters solid boundaries, and demonstrate that under navigation, the colloidal microswarm passes through confined channel networks towards multiple targets with high access rates and high swarming pattern stability.

Suggested Citation

  • Jiangfan Yu & Ben Wang & Xingzhou Du & Qianqian Wang & Li Zhang, 2018. "Ultra-extensible ribbon-like magnetic microswarm," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05749-6
    DOI: 10.1038/s41467-018-05749-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05749-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05749-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. K. S. Vikrant & G. R. Jayanth, 2022. "Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Zhongguo Ren & Chen Xin & Kaiwen Liang & Heming Wang & Dawei Wang & Liqun Xu & Yanlei Hu & Jiawen Li & Jiaru Chu & Dong Wu, 2024. "Femtosecond laser writing of ant-inspired reconfigurable microbot collectives," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Sukyoung Won & Hee Eun Lee & Young Shik Cho & Kijun Yang & Jeong Eun Park & Seung Jae Yang & Jeong Jae Wie, 2022. "Multimodal collective swimming of magnetically articulated modular nanocomposite robots," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05749-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.