IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51557-6.html
   My bibliography  Save this article

DSS1 restrains BRCA2’s engagement with dsDNA for homologous recombination, replication fork protection, and R-loop homeostasis

Author

Listed:
  • Yuxin Huang

    (University of Texas Health and Science Center)

  • Wenjing Li

    (University of Texas Health and Science Center)

  • Tzeh Foo

    (Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School)

  • Jae-Hoon Ji

    (University of Texas Health and Science Center
    University of Texas Health Science Center at San Antonio)

  • Bo Wu

    (University of Texas Health and Science Center)

  • Nozomi Tomimatsu

    (University of Texas Health Science Center at San Antonio)

  • Qingming Fang

    (University of Texas Health and Science Center
    University of Texas Health Science Center at San Antonio)

  • Boya Gao

    (Harvard Medical School)

  • Melissa Long

    (Harvard Medical School)

  • Jingfei Xu

    (Northwestern University)

  • Rouf Maqbool

    (University of Texas Health and Science Center)

  • Bipasha Mukherjee

    (Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School)

  • Tengyang Ni

    (University of Texas Health and Science Center)

  • Salvador Alejo

    (University of Texas Health Science Center)

  • Yuan He

    (Northwestern University)

  • Sandeep Burma

    (University of Texas Health and Science Center
    University of Texas Health Science Center at San Antonio)

  • Li Lan

    (Harvard Medical School
    Duke University)

  • Bing Xia

    (Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School)

  • Weixing Zhao

    (University of Texas Health and Science Center
    University of Texas Health Science Center at San Antonio)

Abstract

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1’s DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.

Suggested Citation

  • Yuxin Huang & Wenjing Li & Tzeh Foo & Jae-Hoon Ji & Bo Wu & Nozomi Tomimatsu & Qingming Fang & Boya Gao & Melissa Long & Jingfei Xu & Rouf Maqbool & Bipasha Mukherjee & Tengyang Ni & Salvador Alejo & , 2024. "DSS1 restrains BRCA2’s engagement with dsDNA for homologous recombination, replication fork protection, and R-loop homeostasis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51557-6
    DOI: 10.1038/s41467-024-51557-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51557-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51557-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kathryn Tunyasuvunakool & Jonas Adler & Zachary Wu & Tim Green & Michal Zielinski & Augustin Žídek & Alex Bridgland & Andrew Cowie & Clemens Meyer & Agata Laydon & Sameer Velankar & Gerard J. Kleywegt, 2021. "Highly accurate protein structure prediction for the human proteome," Nature, Nature, vol. 596(7873), pages 590-596, August.
    2. Wataru Sakai & Elizabeth M. Swisher & Beth Y. Karlan & Mukesh K. Agarwal & Jake Higgins & Cynthia Friedman & Emily Villegas & Céline Jacquemont & Daniel J. Farrugia & Fergus J. Couch & Nicole Urban & , 2008. "Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers," Nature, Nature, vol. 451(7182), pages 1116-1120, February.
    3. Fumiko Esashi & Nicole Christ & Julian Gannon & Yilun Liu & Tim Hunt & Maria Jasin & Stephen C. West, 2005. "CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair," Nature, Nature, vol. 434(7033), pages 598-604, March.
    4. Weixing Zhao & Justin B. Steinfeld & Fengshan Liang & Xiaoyong Chen & David G. Maranon & Chu Jian Ma & Youngho Kwon & Timsi Rao & Weibin Wang & Chen Sheng & Xuemei Song & Yanhong Deng & Judit Jimenez-, 2017. "BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing," Nature, Nature, vol. 550(7676), pages 360-365, October.
    5. Yan Wang & Binbin Ma & Xiaoxu Liu & Ge Gao & Zhuanzhuan Che & Menghan Fan & Siyan Meng & Xiru Zhao & Rio Sugimura & Hua Cao & Zhongjun Zhou & Jing Xie & Chengqi Lin & Zhuojuan Luo, 2022. "ZFP281-BRCA2 prevents R-loop accumulation during DNA replication," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. John Jumper & Richard Evans & Alexander Pritzel & Tim Green & Michael Figurnov & Olaf Ronneberger & Kathryn Tunyasuvunakool & Russ Bates & Augustin Žídek & Anna Potapenko & Alex Bridgland & Clemens Me, 2021. "Highly accurate protein structure prediction with AlphaFold," Nature, Nature, vol. 596(7873), pages 583-589, August.
    7. Youngho Kwon & Heike Rösner & Weixing Zhao & Platon Selemenakis & Zhuoling He & Ajinkya S. Kawale & Jeffrey N. Katz & Cody M. Rogers & Francisco E. Neal & Aida Badamchi Shabestari & Valdemaras Petrosi, 2023. "DNA binding and RAD51 engagement by the BRCA2 C-terminus orchestrate DNA repair and replication fork preservation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Stacey L. Edwards & Rachel Brough & Christopher J. Lord & Rachael Natrajan & Radost Vatcheva & Douglas A. Levine & Jeff Boyd & Jorge S. Reis-Filho & Alan Ashworth, 2008. "Resistance to therapy caused by intragenic deletion in BRCA2," Nature, Nature, vol. 451(7182), pages 1111-1115, February.
    9. Vaibhav Bhatia & Sonia I. Barroso & María L. García-Rubio & Emanuela Tumini & Emilia Herrera-Moyano & Andrés Aguilera, 2014. "BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2," Nature, Nature, vol. 511(7509), pages 362-365, July.
    10. Yaqun Teng & Tribhuwan Yadav & Meihan Duan & Jun Tan & Yufei Xiang & Boya Gao & Jianquan Xu & Zhuobin Liang & Yang Liu & Satoshi Nakajima & Yi Shi & Arthur S. Levine & Lee Zou & Li Lan, 2018. "ROS-induced R loops trigger a transcription-coupled but BRCA1/2-independent homologous recombination pathway through CSB," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Appleby & Luay Joudeh & Katie Cobbett & Luca Pellegrini, 2023. "Structural basis for stabilisation of the RAD51 nucleoprotein filament by BRCA2," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Ye Yuan & Lei Chen & Kexu Song & Miaomiao Cheng & Ling Fang & Lingfei Kong & Lanlan Yu & Ruonan Wang & Zhendong Fu & Minmin Sun & Qian Wang & Chengjun Cui & Haojue Wang & Jiuyang He & Xiaonan Wang & Y, 2024. "Stable peptide-assembled nanozyme mimicking dual antifungal actions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Ivica Odorčić & Mohamed Belal Hamed & Sam Lismont & Lucía Chávez-Gutiérrez & Rouslan G. Efremov, 2024. "Apo and Aβ46-bound γ-secretase structures provide insights into amyloid-β processing by the APH-1B isoform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Stella Vitt & Simone Prinz & Martin Eisinger & Ulrich Ermler & Wolfgang Buckel, 2022. "Purification and structural characterization of the Na+-translocating ferredoxin: NAD+ reductase (Rnf) complex of Clostridium tetanomorphum," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Pierre Azoulay & Joshua Krieger & Abhishek Nagaraj, 2024. "Old Moats for New Models: Openness, Control, and Competition in Generative AI," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    6. Riya Shah & Thomas C. Panagiotou & Gregory B. Cole & Trevor F. Moraes & Brigitte D. Lavoie & Christopher A. McCulloch & Andrew Wilde, 2024. "The DIAPH3 linker specifies a β-actin network that maintains RhoA and Myosin-II at the cytokinetic furrow," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Yashan Yang & Qianqian Shao & Mingcheng Guo & Lin Han & Xinyue Zhao & Aohan Wang & Xiangyun Li & Bo Wang & Ji-An Pan & Zhenguo Chen & Andrei Fokine & Lei Sun & Qianglin Fang, 2024. "Capsid structure of bacteriophage ΦKZ provides insights into assembly and stabilization of jumbo phages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Bret M. Boyd & Ian James & Kevin P. Johnson & Robert B. Weiss & Sarah E. Bush & Dale H. Clayton & Colin Dale, 2024. "Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Shuo-Shuo Liu & Tian-Xia Jiang & Fan Bu & Ji-Lan Zhao & Guang-Fei Wang & Guo-Heng Yang & Jie-Yan Kong & Yun-Fan Qie & Pei Wen & Li-Bin Fan & Ning-Ning Li & Ning Gao & Xiao-Bo Qiu, 2024. "Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Eliza S. Nieweglowska & Axel F. Brilot & Melissa Méndez-Moran & Claire Kokontis & Minkyung Baek & Junrui Li & Yifan Cheng & David Baker & Joseph Bondy-Denomy & David A. Agard, 2023. "The ϕPA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Sash Lopaticki & Robyn McConville & Alan John & Niall Geoghegan & Shihab Deen Mohamed & Lisa Verzier & Ryan W. J. Steel & Cindy Evelyn & Matthew T. O’Neill & Niccolay Madiedo Soler & Nichollas E. Scot, 2022. "Tryptophan C-mannosylation is critical for Plasmodium falciparum transmission," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Radoslaw Pluta & Eric Aragón & Nicholas A. Prescott & Lidia Ruiz & Rebeca A. Mees & Blazej Baginski & Julia R. Flood & Pau Martin-Malpartida & Joan Massagué & Yael David & Maria J. Macias, 2022. "Molecular basis for DNA recognition by the maternal pioneer transcription factor FoxH1," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Xiaoke Yang & Mingqi Zhu & Xue Lu & Yuxin Wang & Junyu Xiao, 2024. "Architecture and activation of human muscle phosphorylase kinase," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Efren Garcia-Maldonado & Andrew D. Huber & Sergio C. Chai & Stanley Nithianantham & Yongtao Li & Jing Wu & Shyaron Poudel & Darcie J. Miller & Jayaraman Seetharaman & Taosheng Chen, 2024. "Chemical manipulation of an activation/inhibition switch in the nuclear receptor PXR," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Mindaugas Margelevičius, 2024. "GTalign: spatial index-driven protein structure alignment, superposition, and search," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Kristy Rochon & Brianna L. Bauer & Nathaniel A. Roethler & Yuli Buckley & Chih-Chia Su & Wei Huang & Rajesh Ramachandran & Maria S. K. Stoll & Edward W. Yu & Derek J. Taylor & Jason A. Mears, 2024. "Structural basis for regulated assembly of the mitochondrial fission GTPase Drp1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Katherine A. Ray & Joshua D. Lutgens & Ramesh Bista & Jie Zhang & Ronak R. Desai & Melissa Hirsch & Takeshi Miyazawa & Antonio Cordova & Adrian T. Keatinge-Clay, 2024. "Assessing and harnessing updated polyketide synthase modules through combinatorial engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51557-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.