IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51444-0.html
   My bibliography  Save this article

The proto-oncogene tyrosine kinase c-SRC facilitates glioblastoma progression by remodeling fatty acid synthesis

Author

Listed:
  • Wentao Zhao

    (Xiamen University
    Xiamen University)

  • Cong Ouyang

    (Xiamen University)

  • Liang Zhang

    (Xiamen University)

  • Jinyang Wang

    (Xiamen University)

  • Jiaojiao Zhang

    (Xiamen University)

  • Yan Zhang

    (Xiamen University)

  • Chen Huang

    (Xiamen University)

  • Qiao Xiao

    (Xiamen University)

  • Bin Jiang

    (Xiamen University)

  • Furong Lin

    (Xiamen University)

  • Cixiong Zhang

    (Xiamen University)

  • Mingxia Zhu

    (Xiamen University)

  • Changchuan Xie

    (Xiamen University)

  • Xi Huang

    (Xiamen University)

  • Bingchang Zhang

    (Xiamen University)

  • Wenpeng Zhao

    (Xiamen University)

  • Jiawei He

    (Xiamen University)

  • Sifang Chen

    (Xiamen University)

  • Xiyao Liu

    (Xiamen University)

  • Donghai Lin

    (Xiamen University)

  • Qinxi Li

    (Xiamen University)

  • Zhanxiang Wang

    (Xiamen University)

Abstract

Increased fatty acid synthesis benefits glioblastoma malignancy. However, the coordinated regulation of cytosolic acetyl-CoA production, the exclusive substrate for fatty acid synthesis, remains unclear. Here, we show that proto-oncogene tyrosine kinase c-SRC is activated in glioblastoma and remodels cytosolic acetyl-CoA production for fatty acid synthesis. Firstly, acetate is an important substrate for fatty acid synthesis in glioblastoma. c-SRC phosphorylates acetyl-CoA synthetase ACSS2 at Tyr530 and Tyr562 to stimulate the conversion of acetate to acetyl-CoA in cytosol. Secondly, c-SRC inhibits citrate-derived acetyl-CoA synthesis by phosphorylating ATP-citrate lyase ACLY at Tyr682. ACLY phosphorylation shunts citrate to IDH1-catalyzed NADPH production to provide reducing equivalent for fatty acid synthesis. The c-SRC-unresponsive double-mutation of ACSS2 and ACLY significantly reduces fatty acid synthesis and hampers glioblastoma progression. In conclusion, this remodeling fulfills the dual needs of glioblastoma cells for both acetyl-CoA and NADPH in fatty acid synthesis and provides evidence for glioma treatment by c-SRC inhibition.

Suggested Citation

  • Wentao Zhao & Cong Ouyang & Liang Zhang & Jinyang Wang & Jiaojiao Zhang & Yan Zhang & Chen Huang & Qiao Xiao & Bin Jiang & Furong Lin & Cixiong Zhang & Mingxia Zhu & Changchuan Xie & Xi Huang & Bingch, 2024. "The proto-oncogene tyrosine kinase c-SRC facilitates glioblastoma progression by remodeling fatty acid synthesis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51444-0
    DOI: 10.1038/s41467-024-51444-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51444-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51444-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alejo Efeyan & William C. Comb & David M. Sabatini, 2015. "Nutrient-sensing mechanisms and pathways," Nature, Nature, vol. 517(7534), pages 302-310, January.
    2. Jia Zhang & Suili Wang & Bin Jiang & Lihong Huang & Zhiliang Ji & Xiaotong Li & Huamin Zhou & Aidong Han & Ai Chen & Yanan Wu & Huanhuan Ma & Wentao Zhao & Qingwen Zhao & Changchuan Xie & Xiaoyan Sun , 2017. "c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis," Nature Communications, Nature, vol. 8(1), pages 1-16, April.
    3. Barbara Chaneton & Petra Hillmann & Liang Zheng & Agnès C. L. Martin & Oliver D. K. Maddocks & Achuthanunni Chokkathukalam & Joseph E. Coyle & Andris Jankevics & Finn P. Holding & Karen H. Vousden & C, 2012. "Serine is a natural ligand and allosteric activator of pyruvate kinase M2," Nature, Nature, vol. 491(7424), pages 458-462, November.
    4. Xue Gao & Shu-Hai Lin & Feng Ren & Jin-Tao Li & Jia-Jia Chen & Chuan-Bo Yao & Hong-Bin Yang & Shu-Xia Jiang & Guo-Quan Yan & Di Wang & Yi Wang & Ying Liu & Zongwei Cai & Ying-Ying Xu & Jing Chen & Wen, 2016. "Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia," Nature Communications, Nature, vol. 7(1), pages 1-14, September.
    5. Nian Jiang & Bowen Xie & Wenwu Xiao & Ming Fan & Shanxiu Xu & Yixin Duan & Yamah Hamsafar & Angela C. Evans & Jie Huang & Weibing Zhou & Xuelei Lin & Ningrong Ye & Siyi Wanggou & Wen Chen & Di Jing & , 2022. "Fatty acid oxidation fuels glioblastoma radioresistance with CD47-mediated immune evasion," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ipshita Nandi & Linjia Ji & Harvey W. Smith & Daina Avizonis & Vasilios Papavasiliou & Cynthia Lavoie & Alain Pacis & Sherif Attalla & Virginie Sanguin-Gendreau & William J. Muller, 2024. "Targeting fatty acid oxidation enhances response to HER2-targeted therapy," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Nicola Alesi & Elie W. Akl & Damir Khabibullin & Heng-Jia Liu & Anna S. Nidhiry & Emma R. Garner & Harilaos Filippakis & Hilaire C. Lam & Wei Shi & Srinivas R. Viswanathan & Manrico Morroni & Shawn M., 2021. "TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. C. Megan Young & Laurent Beziaud & Pierre Dessen & Angela Madurga Alonso & Albert Santamaria-Martínez & Joerg Huelsken, 2023. "Metabolic dependencies of metastasis-initiating cells in female breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Charlotte M. François & Thomas Pihl & Marion Dunoyer de Segonzac & Chloé Hérault & Bruno Hudry, 2023. "Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Chuanyuan Wei & Wei Sun & Kangjie Shen & Jingqin Zhong & Wanlin Liu & Zixu Gao & Yu Xu & Lu Wang & Tu Hu & Ming Ren & Yinlam Li & Yu Zhu & Shaoluan Zheng & Ming Zhu & Rongkui Luo & Yanwen Yang & Yingy, 2023. "Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Hanyang Dong & Jianji Zhang & Hui Zhang & Yue Han & Congcong Lu & Chen Chen & Xiaoxia Tan & Siyu Wang & Xue Bai & Guijin Zhai & Shanshan Tian & Tao Zhang & Zhongyi Cheng & Enmin Li & Liyan Xu & Kai Zh, 2022. "YiaC and CobB regulate lysine lactylation in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Rong-Hsuan Wang & Pin-Ru Chen & Yue-Ting Chen & Yi-Chang Chen & Yu-Hsin Chu & Chia-Chen Chien & Po-Chen Chien & Shao-Yun Lo & Zhong-Liang Wang & Min-Chen Tsou & Ssu-Yu Chen & Guang-Shen Chiu & Wen-Lin, 2024. "Hydrogen sulfide coordinates glucose metabolism switch through destabilizing tetrameric pyruvate kinase M2," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    9. Rushikesh Patel & Ajay Kumar Raj & Kiran Bharat Lokhande & Mazen A. Almasri & Khalid J. Alzahrani & Asma Saleh Almeslet & K. Venkateswara Swamy & Gargi S. Sarode & Sachin C. Sarode & Shankargouda Pati, 2021. "Detection of Nail Oncometabolite SAICAR in Oral Cancer Patients and Its Molecular Interactions with PKM2 Enzyme," IJERPH, MDPI, vol. 18(21), pages 1-11, October.
    10. George Rosenberger & Wenxue Li & Mikko Turunen & Jing He & Prem S. Subramaniam & Sergey Pampou & Aaron T. Griffin & Charles Karan & Patrick Kerwin & Diana Murray & Barry Honig & Yansheng Liu & Andrea , 2024. "Network-based elucidation of colon cancer drug resistance mechanisms by phosphoproteomic time-series analysis," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    11. Olga Kubrak & Takashi Koyama & Nadja Ahrentløv & Line Jensen & Alina Malita & Muhammad T. Naseem & Mette Lassen & Stanislav Nagy & Michael J. Texada & Kenneth V. Halberg & Kim Rewitz, 2022. "The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Fabiola Diniz & Nguyen Yen Nhi Ngo & Mariel Colon-Leyva & Francesca Edgington-Giordano & Sylvia Hilliard & Kevin Zwezdaryk & Jiao Liu & Samir S. El-Dahr & Giovane G. Tortelote, 2023. "Acetyl-CoA is a key molecule for nephron progenitor cell pool maintenance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Joana Silva & Ferhat Alkan & Sofia Ramalho & Goda Snieckute & Stefan Prekovic & Ana Krotenberg Garcia & Santiago Hernández-Pérez & Rob Kammen & Danielle Barnum & Liesbeth Hoekman & Maarten Altelaar & , 2022. "Ribosome impairment regulates intestinal stem cell identity via ZAKɑ activation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Yinsheng Wu & Lixu Tang & Han Huang & Qi Yu & Bicheng Hu & Gang Wang & Feng Ge & Tailang Yin & Shanshan Li & Xilan Yu, 2023. "Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    15. Tomas Venit & Oscar Sapkota & Wael Said Abdrabou & Palanikumar Loganathan & Renu Pasricha & Syed Raza Mahmood & Nadine Hosny El Said & Shimaa Sherif & Sneha Thomas & Salah Abdelrazig & Shady Amin & Da, 2023. "Positive regulation of oxidative phosphorylation by nuclear myosin 1 protects cells from metabolic reprogramming and tumorigenesis in mice," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    16. E. Havula & S. Ghazanfar & N. Lamichane & D. Francis & K. Hasygar & Y. Liu & L. A. Alton & J. Johnstone & E. J. Needham & T. Pulpitel & T. Clark & H. N. Niranjan & V. Shang & V. Tong & N. Jiwnani & G., 2022. "Genetic variation of macronutrient tolerance in Drosophila melanogaster," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Olivier Gemin & Maciej Gluc & Higor Rosa & Michael Purdy & Moritz Niemann & Yelena Peskova & Simone Mattei & Ahmad Jomaa, 2024. "Ribosomes hibernate on mitochondria during cellular stress," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Kibum Kim & Hee Chan Yoo & Byung Gyu Kim & Sulhee Kim & Yulseung Sung & Ina Yoon & Ya Chun Yu & Seung Joon Park & Jong Hyun Kim & Kyungjae Myung & Kwang Yeon Hwang & Sunghoon Kim & Jung Min Han, 2022. "O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51444-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.