Nacre-like surface nanolaminates enhance fatigue resistance of pure titanium
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51423-5
Download full text from publisher
References listed on IDEAS
- Qi Zhang & Yuman Zhu & Xiang Gao & Yuxiang Wu & Christopher Hutchinson, 2020. "Training high-strength aluminum alloys to withstand fatigue," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- Mingyang Zhang & Ning Zhao & Qin Yu & Zengqian Liu & Ruitao Qu & Jian Zhang & Shujun Li & Dechun Ren & Filippo Berto & Zhefeng Zhang & Robert O. Ritchie, 2022. "On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mingliang Han & Yuan Wu & Xiaobin Zong & Yaozu Shen & Fei Zhang & Hongbo Lou & Xiao Dong & Zhidan Zeng & Xiangyang Peng & Shuo Hou & Guangyao Lu & Lianghua Xiong & Bingmin Yan & Huiyang Gou & Yanping , 2024. "Lightweight single-phase Al-based complex concentrated alloy with high specific strength," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Tielong Han & Chao Hou & Zhi Zhao & Zengbao Jiao & Yurong Li & Shuang Jiang & Hao Lu & Haibin Wang & Xuemei Liu & Zuoren Nie & Xiaoyan Song, 2024. "Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Siwon Yu & Seunggyu Park & Kang Taek Lee & Jun Yeon Hwang & Soon Hyung Hong & Thomas James Marrow, 2024. "On the crack resistance and damage tolerance of 3D-printed nature-inspired hierarchical composite architecture," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Xiao Zhang & Kaijin Wu & Yong Ni & Linghui He, 2022. "Anomalous inapplicability of nacre-like architectures as impact-resistant templates in a wide range of impact velocities," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51423-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.