IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32620-6.html
   My bibliography  Save this article

Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion

Author

Listed:
  • Bo Xiao

    (City University of Hong Kong
    City University of Hong Kong
    City University of Hong Kong)

  • Junhua Luan

    (City University of Hong Kong)

  • Shijun Zhao

    (City University of Hong Kong)

  • Lijun Zhang

    (Central South University)

  • Shiyao Chen

    (Central South University)

  • Yilu Zhao

    (Harbin Institute of Technology (Shenzhen))

  • Lianyong Xu

    (Tianjin University)

  • C. T. Liu

    (City University of Hong Kong
    City University of Hong Kong)

  • Ji-Jung Kai

    (City University of Hong Kong)

  • Tao Yang

    (City University of Hong Kong
    City University of Hong Kong)

Abstract

Nanoparticle strengthening provides a crucial basis for developing high-performance structural materials with potentially superb mechanical properties for structural applications. However, the general wisdom often fails to work well due to the poor thermal stability of nanoparticles, and the rapid coarsening of these particles will lead to the accelerated failures of these materials especially at elevated temperatures. Here, we demonstrate a strategy to achieve ultra-stable nanoparticles at 800~1000 °C in a Ni59.9-xCoxFe13Cr15Al6Ti6B0.1 (at.%) chemically complex alloy, resulting from the controllable sluggish lattice diffusion (SLD) effect. Our diffusion kinetic simulations reveal that the Co element leads to a significant reduction in the interdiffusion coefficients of all the main elements, especially for the Al element, with a maximum of up to 5 orders of magnitude. Utilizing first-principles calculations, we further unveil the incompressibility of Al induced by the increased concentration of Co plays a critical role in controlling the SLD effect. These findings are useful for providing advances in the design of novel structural alloys with extraordinary property-microstructure stability combinations for structural applications.

Suggested Citation

  • Bo Xiao & Junhua Luan & Shijun Zhao & Lijun Zhang & Shiyao Chen & Yilu Zhao & Lianyong Xu & C. T. Liu & Ji-Jung Kai & Tao Yang, 2022. "Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32620-6
    DOI: 10.1038/s41467-022-32620-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32620-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32620-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rui Feng & You Rao & Chuhao Liu & Xie Xie & Dunji Yu & Yan Chen & Maryam Ghazisaeidi & Tamas Ungar & Huamiao Wang & Ke An & Peter. K. Liaw, 2021. "Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Zhifeng Lei & Xiongjun Liu & Yuan Wu & Hui Wang & Suihe Jiang & Shudao Wang & Xidong Hui & Yidong Wu & Baptiste Gault & Paraskevas Kontis & Dierk Raabe & Lin Gu & Qinghua Zhang & Houwen Chen & Hongtao, 2018. "Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes," Nature, Nature, vol. 563(7732), pages 546-550, November.
    3. Peter V. Liddicoat & Xiao-Zhou Liao & Yonghao Zhao & Yuntian Zhu & Maxim Y. Murashkin & Enrique J. Lavernia & Ruslan Z. Valiev & Simon P. Ringer, 2010. "Nanostructural hierarchy increases the strength of aluminium alloys," Nature Communications, Nature, vol. 1(1), pages 1-7, December.
    4. T. M. Smith & B. D. Esser & N. Antolin & A. Carlsson & R. E. A. Williams & A. Wessman & T. Hanlon & H. L. Fraser & W. Windl & D. W. McComb & M. J. Mills, 2016. "Phase transformation strengthening of high-temperature superalloys," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    5. Zhiming Li & Konda Gokuldoss Pradeep & Yun Deng & Dierk Raabe & Cemal Cem Tasan, 2016. "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature, Nature, vol. 534(7606), pages 227-230, June.
    6. Qi Zhang & Yuman Zhu & Xiang Gao & Yuxiang Wu & Christopher Hutchinson, 2020. "Training high-strength aluminum alloys to withstand fatigue," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. Ting-Chiang Lin & Chezheng Cao & Maximilian Sokoluk & Lin Jiang & Xin Wang & Julie M. Schoenung & Enrique J. Lavernia & Xiaochun Li, 2019. "Aluminum with dispersed nanoparticles by laser additive manufacturing," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    3. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Bin Ouyang & Yan Zeng, 2024. "The rise of high-entropy battery materials," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    5. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Punit Kumar & Sheng Huang & David H. Cook & Kai Chen & Upadrasta Ramamurty & Xipeng Tan & Robert O. Ritchie, 2024. "A strong fracture-resistant high-entropy alloy with nano-bridged honeycomb microstructure intrinsically toughened by 3D-printing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zongrui Pei & Shiteng Zhao & Martin Detrois & Paul D. Jablonski & Jeffrey A. Hawk & David E. Alman & Mark Asta & Andrew M. Minor & Michael C. Gao, 2023. "Theory-guided design of high-entropy alloys with enhanced strength-ductility synergy," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. O. El Atwani & H. T. Vo & M. A. Tunes & C. Lee & A. Alvarado & N. Krienke & J. D. Poplawsky & A. A. Kohnert & J. Gigax & W.-Y. Chen & M. Li & Y. Q. Wang & J. S. Wróbel & D. Nguyen-Manh & J. K. S. Bald, 2023. "A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Benjamin P. MacLeod & Fraser G. L. Parlane & Connor C. Rupnow & Kevan E. Dettelbach & Michael S. Elliott & Thomas D. Morrissey & Ted H. Haley & Oleksii Proskurin & Michael B. Rooney & Nina Taherimakhs, 2022. "A self-driving laboratory advances the Pareto front for material properties," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Chongle Zhang & Xiangyun Bao & Mengyuan Hao & Wei Chen & Dongdong Zhang & Dong Wang & Jinyu Zhang & Gang Liu & Jun Sun, 2022. "Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Jingqi Zhang & Yingang Liu & Gang Sha & Shenbao Jin & Ziyong Hou & Mohamad Bayat & Nan Yang & Qiyang Tan & Yu Yin & Shiyang Liu & Jesper Henri Hattel & Matthew Dargusch & Xiaoxu Huang & Ming-Xing Zhan, 2022. "Designing against phase and property heterogeneities in additively manufactured titanium alloys," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Hai Wang & Wei Song & Mingfeng Liu & Shuyuan Zhang & Ling Ren & Dong Qiu & Xing-Qiu Chen & Ke Yang, 2022. "Manufacture-friendly nanostructured metals stabilized by dual-phase honeycomb shell," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Wei Chen & Antoine Hilhorst & Georgios Bokas & Stéphane Gorsse & Pascal J. Jacques & Geoffroy Hautier, 2023. "A map of single-phase high-entropy alloys," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Yan Chong & Ruopeng Zhang & Mohammad S. Hooshmand & Shiteng Zhao & Daryl C. Chrzan & Mark Asta & J. W. Morris & Andrew M. Minor, 2021. "Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Wuyang Ren & Wenhua Xue & Shuping Guo & Ran He & Liangzi Deng & Shaowei Song & Andrei Sotnikov & Kornelius Nielsch & Jeroen Brink & Guanhui Gao & Shuo Chen & Yimo Han & Jiang Wu & Ching-Wu Chu & Zhimi, 2023. "Vacancy-mediated anomalous phononic and electronic transport in defective half-Heusler ZrNiBi," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Sheng Xu & Takumi Odaira & Shunsuke Sato & Xiao Xu & Toshihiro Omori & Stefanus Harjo & Takuro Kawasaki & Hanuš Seiner & Kristýna Zoubková & Yasukazu Murakami & Ryosuke Kainuma, 2022. "Non-Hookean large elastic deformation in bulk crystalline metals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Hyun Chung & Won Seok Choi & Hosun Jun & Hyeon-Seok Do & Byeong-Joo Lee & Pyuck-Pa Choi & Heung Nam Han & Won-Seok Ko & Seok Su Sohn, 2023. "Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Ge Wu & Chang Liu & Yong-Qiang Yan & Sida Liu & Xinyu Ma & Shengying Yue & Zhi-Wei Shan, 2024. "Elemental partitioning-mediated crystalline-to-amorphous phase transformation under quasi-static deformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32620-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.