IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51332-7.html
   My bibliography  Save this article

Clinical utility of a blood based assay for the detection of IDH1.R132H-mutant gliomas

Author

Listed:
  • Syeda Maheen Batool

    (Harvard Medical School)

  • Ana K. Escobedo

    (Harvard Medical School)

  • Tiffaney Hsia

    (Harvard Medical School)

  • Emil Ekanayake

    (Harvard Medical School)

  • Sirena K. Khanna

    (Harvard Medical School)

  • Austin S. Gamblin

    (Harvard Medical School)

  • Hui Zheng

    (Harvard Medical School)

  • Johan Skog

    (a Bio-Techne Brand)

  • Julie J. Miller

    (Harvard Medical School
    Harvard Medical School)

  • Anat O. Stemmer-Rachamimov

    (Harvard Medical School)

  • Daniel P. Cahill

    (Harvard Medical School)

  • Leonora Balaj

    (Harvard Medical School)

  • Bob S. Carter

    (Harvard Medical School)

Abstract

Glioma represents the most common central nervous system neoplasm in adults. Current classification scheme utilizes molecular alterations, particularly IDH1.R132H, to stratify lesions into distinct prognostic groups. Identification of the single nucleotide variant through traditional tissue biopsy assessment poses procedural risks and does not fully reflect the heterogeneous and evolving tumor landscape. Here, we introduce a liquid biopsy assay, mt-IDH1dx. The blood-based test allows minimally invasive detection of tumor-derived extracellular vesicle RNA using only 2 ml plasma volume. We perform rigorous, blinded validation testing across the study population (n = 133), comprising of IDH1.R132H patients (n = 80), IDH1 wild-type gliomas (n = 44), and age matched healthy controls (n = 9). Results from our plasma testing demonstrate an overall sensitivity of 75.0% (95% CI: 64.1%–84.0%), specificity 88.7% (95% CI: 77.0%–95.7%), positive predictive value 90.9%, and negative predictive value 70.1% compared to the tissue gold standard. In addition to fundamental diagnostic applications, the study also highlights the utility of mt-IDH1dx platform for blood-based monitoring and surveillance, offering valuable prognostic information. Finally, the optimized workflow enables rapid and efficient completion of both tumor tissue and plasma testing in under 4 hours from the time of sampling.

Suggested Citation

  • Syeda Maheen Batool & Ana K. Escobedo & Tiffaney Hsia & Emil Ekanayake & Sirena K. Khanna & Austin S. Gamblin & Hui Zheng & Johan Skog & Julie J. Miller & Anat O. Stemmer-Rachamimov & Daniel P. Cahill, 2024. "Clinical utility of a blood based assay for the detection of IDH1.R132H-mutant gliomas," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51332-7
    DOI: 10.1038/s41467-024-51332-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51332-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51332-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lenny Dang & David W. White & Stefan Gross & Bryson D. Bennett & Mark A. Bittinger & Edward M. Driggers & Valeria R. Fantin & Hyun Gyung Jang & Shengfang Jin & Marie C. Keenan & Kevin M. Marks & Rober, 2009. "Cancer-associated IDH1 mutations produce 2-hydroxyglutarate," Nature, Nature, vol. 462(7274), pages 739-744, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Codacci-Pisanelli, 2017. "Epigenetic Targets in the Treatment of cancer," Novel Approaches in Drug Designing & Development, Juniper Publishers Inc., vol. 1(4), pages 56-57, June.
    2. Muhammad Shemyal Nisar & Xiangwei Zhao, 2019. "High Resolution Mass Spectroscopy for Single Cell Analysis," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 18(4), pages 13820-13824, June.
    3. Mark A. McCoy & Jun Lu & F. Richard Miller & Stephen M. Soisson & Michael H. Lam & Christian Fischer, 2024. "Biostructural, biochemical and biophysical studies of mutant IDH1," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Kotaro Soeda & Takayoshi Sasako & Kenichiro Enooku & Naoto Kubota & Naoki Kobayashi & Yoshiko Matsumoto Ikushima & Motoharu Awazawa & Ryotaro Bouchi & Gotaro Toda & Tomoharu Yamada & Takuma Nakatsuka , 2023. "Gut insulin action protects from hepatocarcinogenesis in diabetic mice comorbid with nonalcoholic steatohepatitis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Zidan Wang & Donghui Zhang & Junhan Wu & Wenpeng Zhang & Yu Xia, 2024. "Illuminating the dark space of neutral glycosphingolipidome by selective enrichment and profiling at multi-structural levels," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Heta Desai & Katrina H. Andrews & Kristina V. Bergersen & Samuel Ofori & Fengchao Yu & Flowreen Shikwana & Mark A. Arbing & Lisa M. Boatner & Miranda Villanueva & Nicholas Ung & Elaine F. Reed & Alexe, 2024. "Chemoproteogenomic stratification of the missense variant cysteinome," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    7. Ling Tao & Mahmoud A. Mohammad & Giorgio Milazzo & Myrthala Moreno-Smith & Tajhal D. Patel & Barry Zorman & Andrew Badachhape & Blanca E. Hernandez & Amber B. Wolf & Zihua Zeng & Jennifer H. Foster & , 2022. "MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51332-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.