Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-51022-4
Download full text from publisher
References listed on IDEAS
- Ali Han & Xiaofeng Zhou & Xijun Wang & Sheng Liu & Qihua Xiong & Qinghua Zhang & Lin Gu & Zechao Zhuang & Wenjing Zhang & Fanxing Li & Dingsheng Wang & Lain-Jong Li & Yadong Li, 2021. "One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Shengjie Wei & Yibing Sun & Yun-Ze Qiu & Ang Li & Ching-Yu Chiang & Hai Xiao & Jieshu Qian & Yadong Li, 2023. "Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Yiwei Liu & Xi Wu & Zhi Li & Jian Zhang & Shu-Xia Liu & Shoujie Liu & Lin Gu & Li Rong Zheng & Jia Li & Dingsheng Wang & Yadong Li, 2021. "Fabricating polyoxometalates-stabilized single-atom site catalysts in confined space with enhanced activity for alkynes diboration," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Shuizhong Wang & Kaili Zhang & Helong Li & Ling-Ping Xiao & Guoyong Song, 2021. "Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- John C. Thomas & Wei Chen & Yihuang Xiong & Bradford A. Barker & Junze Zhou & Weiru Chen & Antonio Rossi & Nolan Kelly & Zhuohang Yu & Da Zhou & Shalini Kumari & Edward S. Barnard & Joshua A. Robinson, 2024. "A substitutional quantum defect in WS2 discovered by high-throughput computational screening and fabricated by site-selective STM manipulation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xiaolong Gao & Huan Wei & Wenjie Ma & Wenjie Wu & Wenliang Ji & Junjie Mao & Ping Yu & Lanqun Mao, 2024. "Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Chen, Shanshuai & Yan, Puxiang & Yu, Xiaona & Zhu, Wanbin & Wang, Hongliang, 2023. "Conversion of lignin to high yields of aromatics over Ru–ZnO/SBA-15 bifunctional catalysts," Renewable Energy, Elsevier, vol. 215(C).
- Song, Wenjing & Song, Mengxue & Cai, Wenqing & Li, Weichu & Jiang, Xingmao & Fang, Weiping & Lai, Weikun, 2022. "Efficient and stable SiO2-encapsulated NiPt/HY catalyst for catalytic cracking of β-O-4 linkage compound," Renewable Energy, Elsevier, vol. 198(C), pages 334-342.
- Wenlong Xu & Yuwei Zhang & Junjun Wang & Yixiu Xu & Li Bian & Qiang Ju & Yuemin Wang & Zhenlan Fang, 2022. "Defects engineering simultaneously enhances activity and recyclability of MOFs in selective hydrogenation of biomass," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Jiaxin Li & Kai Li & Zhao Li & Chunxue Wang & Yifei Liang & Yatong Pang & Jinzhu Ma & Fei Wang & Ping Ning & Hong He, 2024. "Capture of single Ag atoms through high-temperature-induced crystal plane reconstruction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Zelin Wu & Zhaokun Xiong & Bingkun Huang & Gang Yao & Sihui Zhan & Bo Lai, 2024. "Long-range interactions driving neighboring Fe–N4 sites in Fenton-like reactions for sustainable water decontamination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Lingbin Xie & Longlu Wang & Xia Liu & Jianmei Chen & Xixing Wen & Weiwei Zhao & Shujuan Liu & Qiang Zhao, 2024. "Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Zhenzhen Liu & Helong Li & Xueying Gao & Xuan Guo & Shuizhong Wang & Yunming Fang & Guoyong Song, 2022. "Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Shengjie Wei & Yibing Sun & Yun-Ze Qiu & Ang Li & Ching-Yu Chiang & Hai Xiao & Jieshu Qian & Yadong Li, 2023. "Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51022-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.