IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43040-5.html
   My bibliography  Save this article

Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering

Author

Listed:
  • Shengjie Wei

    (Nankai University
    Tsinghua University)

  • Yibing Sun

    (Nanjing University of Science and Technology)

  • Yun-Ze Qiu

    (Tsinghua University)

  • Ang Li

    (Beijing University of Technology)

  • Ching-Yu Chiang

    (National Synchrotron Radiation Research Center)

  • Hai Xiao

    (Tsinghua University)

  • Jieshu Qian

    (Nanjing University of Science and Technology
    Wuxi University)

  • Yadong Li

    (Tsinghua University)

Abstract

Carbon-defect engineering in metal single-atom catalysts by simple and robust strategy, boosting their catalytic activity, and revealing the carbon defect-catalytic activity relationship are meaningful but challenging. Herein, we report a facile self-carbon-thermal-reduction strategy for carbon-defect engineering of single Fe-N4 sites in ZnO-Carbon nano-reactor, as efficient catalyst in Fenton-like reaction for degradation of phenol. The carbon vacancies are easily constructed adjacent to single Fe-N4 sites during synthesis, facilitating the formation of C-O bonding and lowering the energy barrier of rate-determining-step during degradation of phenol. Consequently, the catalyst Fe-NCv-900 with carbon vacancies exhibits a much improved activity than the Fe-NC-900 without abundant carbon vacancies, with 13.5 times improvement in the first-order rate constant of phenol degradation. The Fe-NCv-900 shows high activity (97% removal ratio of phenol in only 5 min), good recyclability and the wide-ranging pH universality (pH range 3-9). This work not only provides a rational strategy for improving the Fenton-like activity of metal single-atom catalysts, but also deepens the fundamental understanding on how periphery carbon environment affects the property and performance of metal-N4 sites.

Suggested Citation

  • Shengjie Wei & Yibing Sun & Yun-Ze Qiu & Ang Li & Ching-Yu Chiang & Hai Xiao & Jieshu Qian & Yadong Li, 2023. "Self-carbon-thermal-reduction strategy for boosting the Fenton-like activity of single Fe-N4 sites by carbon-defect engineering," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43040-5
    DOI: 10.1038/s41467-023-43040-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43040-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43040-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kejun Chen & Kang Liu & Pengda An & Huangjingwei Li & Yiyang Lin & Junhua Hu & Chuankun Jia & Junwei Fu & Hongmei Li & Hui Liu & Zhang Lin & Wenzhang Li & Jiahang Li & Ying-Rui Lu & Ting-Shan Chan & N, 2020. "Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Shuizhong Wang & Kaili Zhang & Helong Li & Ling-Ping Xiao & Guoyong Song, 2021. "Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolong Gao & Huan Wei & Wenjie Ma & Wenjie Wu & Wenliang Ji & Junjie Mao & Ping Yu & Lanqun Mao, 2024. "Inflammation-free electrochemical in vivo sensing of dopamine with atomic-level engineered antioxidative single-atom catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Zelin Wu & Zhaokun Xiong & Bingkun Huang & Gang Yao & Sihui Zhan & Bo Lai, 2024. "Long-range interactions driving neighboring Fe–N4 sites in Fenton-like reactions for sustainable water decontamination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Shengjie Wei & Wenjie Ma & Minmin Sun & Pan Xiang & Ziqi Tian & Lanqun Mao & Lizeng Gao & Yadong Li, 2024. "Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Ying Wang & Vinod K. Paidi & Weizhen Wang & Yong Wang & Guangri Jia & Tingyu Yan & Xiaoqiang Cui & Songhua Cai & Jingxiang Zhao & Kug-Seung Lee & Lawrence Yoon Suk Lee & Kwok-Yin Wong, 2024. "Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Chen, Shanshuai & Yan, Puxiang & Yu, Xiaona & Zhu, Wanbin & Wang, Hongliang, 2023. "Conversion of lignin to high yields of aromatics over Ru–ZnO/SBA-15 bifunctional catalysts," Renewable Energy, Elsevier, vol. 215(C).
    5. Shengjie Wei & Wenjie Ma & Minmin Sun & Pan Xiang & Ziqi Tian & Lanqun Mao & Lizeng Gao & Yadong Li, 2024. "Atom-pair engineering of single-atom nanozyme for boosting peroxidase-like activity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Peng Zhang & Hsiao-Chien Chen & Houyu Zhu & Kuo Chen & Tuya Li & Yilin Zhao & Jiaye Li & Ruanbo Hu & Siying Huang & Wei Zhu & Yunqi Liu & Yuan Pan, 2024. "Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Zhenzhen Liu & Helong Li & Xueying Gao & Xuan Guo & Shuizhong Wang & Yunming Fang & Guoyong Song, 2022. "Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Kang Liu & Junwei Fu & Yiyang Lin & Tao Luo & Ganghai Ni & Hongmei Li & Zhang Lin & Min Liu, 2022. "Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43040-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.