IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50864-2.html
   My bibliography  Save this article

Preserving a qubit during state-destroying operations on an adjacent qubit at a few micrometers distance

Author

Listed:
  • Sainath Motlakunta

    (University of Waterloo
    University of Waterloo)

  • Nikhil Kotibhaskar

    (University of Waterloo
    University of Waterloo)

  • Chung-You Shih

    (University of Waterloo
    University of Waterloo)

  • Anthony Vogliano

    (University of Waterloo
    University of Waterloo)

  • Darian McLaren

    (University of Waterloo
    University of Waterloo)

  • Lewis Hahn

    (University of Waterloo
    University of Waterloo)

  • Jingwen Zhu

    (University of Waterloo
    University of Waterloo)

  • Roland Hablützel

    (University of Waterloo
    University of Waterloo)

  • Rajibul Islam

    (University of Waterloo
    University of Waterloo)

Abstract

Protecting qubits from accidental measurements is essential for controlled quantum operations, especially during state-destroying measurements or resets on adjacent qubits, in protocols like quantum error correction. Current methods to preserve atomic qubits against such disturbances waste coherence time, extra qubits, and introduce additional errors. We demonstrate the feasibility of in-situ state-reset and state-measurement of trapped ions, achieving >99.9% fidelity in preserving an ‘asset’ ion-qubit while a neighboring ‘process’ qubit is reset, and >99.6% preservation fidelity while applying a detection beam for 11 μs on the same neighbor at a distance of 6 μm. This is achieved through precise wavefront control of addressing optical beams and using a single ion as both a quantum sensor for optical aberrations and an intensity probe with >50 dB dynamic range. Our demonstrations advance quantum processors, enhancing speed and capabilities for tasks like quantum simulations of dissipation and measurement-driven phases, and implementing error correction.

Suggested Citation

  • Sainath Motlakunta & Nikhil Kotibhaskar & Chung-You Shih & Anthony Vogliano & Darian McLaren & Lewis Hahn & Jingwen Zhu & Roland Hablützel & Rajibul Islam, 2024. "Preserving a qubit during state-destroying operations on an adjacent qubit at a few micrometers distance," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50864-2
    DOI: 10.1038/s41467-024-50864-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50864-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50864-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. M. Pino & J. M. Dreiling & C. Figgatt & J. P. Gaebler & S. A. Moses & M. S. Allman & C. H. Baldwin & M. Foss-Feig & D. Hayes & K. Mayer & C. Ryan-Anderson & B. Neyenhuis, 2021. "Demonstration of the trapped-ion quantum CCD computer architecture," Nature, Nature, vol. 592(7853), pages 209-213, April.
    2. V. Negnevitsky & M. Marinelli & K. K. Mehta & H.-Y. Lo & C. Flühmann & J. P. Home, 2018. "Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register," Nature, Nature, vol. 563(7732), pages 527-531, November.
    3. M. Riebe & H. Häffner & C. F. Roos & W. Hänsel & J. Benhelm & G. P. T. Lancaster & T. W. Körber & C. Becher & F. Schmidt-Kaler & D. F. V. James & R. Blatt, 2004. "Deterministic quantum teleportation with atoms," Nature, Nature, vol. 429(6993), pages 734-737, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Wang & Hyukjoon Kwon & Chun-Yang Luan & Wentao Chen & Mu Qiao & Zinan Zhou & Kaizhao Wang & M. S. Kim & Kihwan Kim, 2024. "Snapshotting quantum dynamics at multiple time points," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Kevin Reuer & Jonas Landgraf & Thomas Fösel & James O’Sullivan & Liberto Beltrán & Abdulkadir Akin & Graham J. Norris & Ants Remm & Michael Kerschbaum & Jean-Claude Besse & Florian Marquardt & Andreas, 2023. "Realizing a deep reinforcement learning agent for real-time quantum feedback," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    3. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. L. Feng & Y.-Y. Huang & Y.-K. Wu & W.-X. Guo & J.-Y. Ma & H.-X. Yang & L. Zhang & Y. Wang & C.-X. Huang & C. Zhang & L. Yao & B.-X. Qi & Y.-F. Pu & Z.-C. Zhou & L.-M. Duan, 2024. "Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. William P. Livingston & Machiel S. Blok & Emmanuel Flurin & Justin Dressel & Andrew N. Jordan & Irfan Siddiqi, 2022. "Experimental demonstration of continuous quantum error correction," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. M. Akhtar & F. Bonus & F. R. Lebrun-Gallagher & N. I. Johnson & M. Siegele-Brown & S. Hong & S. J. Hile & S. A. Kulmiya & S. Weidt & W. K. Hensinger, 2023. "A high-fidelity quantum matter-link between ion-trap microchip modules," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Jie Zhao & Hao Jeng & Lorcán O. Conlon & Spyros Tserkis & Biveen Shajilal & Kui Liu & Timothy C. Ralph & Syed M. Assad & Ping Koy Lam, 2023. "Enhancing quantum teleportation efficacy with noiseless linear amplification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    9. Feng, Changchun & Chen, Lin & Zhao, Li-Jun, 2023. "Coherence and entanglement in Grover and Harrow–Hassidim–Lloyd algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    10. Joonhyuk Kwon & William J. Setzer & Michael Gehl & Nicholas Karl & Jay Van Der Wall & Ryan Law & Matthew G. Blain & Daniel Stick & Hayden J. McGuinness, 2024. "Multi-site integrated optical addressing of trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Yanwu Gu & Wei-Feng Zhuang & Xudan Chai & Dong E. Liu, 2023. "Benchmarking universal quantum gates via channel spectrum," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Spencer D. Fallek & Vikram S. Sandhu & Ryan A. McGill & John M. Gray & Holly N. Tinkey & Craig R. Clark & Kenton R. Brown, 2024. "Rapid exchange cooling with trapped ions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50864-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.