IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50616-2.html
   My bibliography  Save this article

Human tactile sensing and sensorimotor mechanism: from afferent tactile signals to efferent motor control

Author

Listed:
  • Yuyang Wei

    (University of Oxford
    The University of Manchester)

  • Andrew G. Marshall

    (University of Liverpool)

  • Francis P. McGlone

    (Aalto University, Otakaari 24)

  • Adarsh Makdani

    (Liverpool John Moores University)

  • Yiming Zhu

    (The University of Manchester)

  • Lingyun Yan

    (The University of Manchester)

  • Lei Ren

    (The University of Manchester
    Ministry of Education, Jilin University)

  • Guowu Wei

    (University of Salford)

Abstract

In tactile sensing, decoding the journey from afferent tactile signals to efferent motor commands is a significant challenge primarily due to the difficulty in capturing population-level afferent nerve signals during active touch. This study integrates a finite element hand model with a neural dynamic model by using microneurography data to predict neural responses based on contact biomechanics and membrane transduction dynamics. This research focuses specifically on tactile sensation and its direct translation into motor actions. Evaluations of muscle synergy during in -vivo experiments revealed transduction functions linking tactile signals and muscle activation. These functions suggest similar sensorimotor strategies for grasping influenced by object size and weight. The decoded transduction mechanism was validated by restoring human-like sensorimotor performance on a tendon-driven biomimetic hand. This research advances our understanding of translating tactile sensation into motor actions, offering valuable insights into prosthetic design, robotics, and the development of next-generation prosthetics with neuromorphic tactile feedback.

Suggested Citation

  • Yuyang Wei & Andrew G. Marshall & Francis P. McGlone & Adarsh Makdani & Yiming Zhu & Lingyun Yan & Lei Ren & Guowu Wei, 2024. "Human tactile sensing and sensorimotor mechanism: from afferent tactile signals to efferent motor control," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50616-2
    DOI: 10.1038/s41467-024-50616-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50616-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50616-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
    2. Ranulfo Romo & Adrián Hernández & Anótonio Zainos & Emilio Salinas, 1998. "Somatosensory discrimination based on cortical microstimulation," Nature, Nature, vol. 392(6674), pages 387-390, March.
    3. Alan J. Emanuel & Brendan P. Lehnert & Stefano Panzeri & Christopher D. Harvey & David D. Ginty, 2021. "Cortical responses to touch reflect subcortical integration of LTMR signals," Nature, Nature, vol. 600(7890), pages 680-685, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    2. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    3. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    4. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    5. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    6. GILLIS, Nicolas & GLINEUR, François, 2011. "Accelerated multiplicative updates and hierarchical als algorithms for nonnegative matrix factorization," LIDAM Discussion Papers CORE 2011030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Shanika L Wickramasuriya & Berwin A Turlach & Rob J Hyndman, 2019. "Optimal Non-negative Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 15/19, Monash University, Department of Econometrics and Business Statistics.
    8. FUJIWARA Yoshi & INOUE Hiroyasu & YAMAGUCHI Takayuki & AOYAMA Hideaki & TANAKA Takuma & KIKUCHI Kentaro, 2021. "Money Flow Network Among Firms' Accounts in a Regional Bank of Japan," Discussion papers 21005, Research Institute of Economy, Trade and Industry (RIETI).
    9. Abubakar, Auwal Bala & Kumam, Poom & Ibrahim, Abdulkarim Hassan & Chaipunya, Parin & Rano, Sadiya Ali, 2022. "New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 670-683.
    10. GILLIS, Nicolas & GLINEUR, François, 2010. "On the geometric interpretation of the nonnegative rank," LIDAM Discussion Papers CORE 2010051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Lei Zhu & Fernando Soldevila & Claudio Moretti & Alexandra d’Arco & Antoine Boniface & Xiaopeng Shao & Hilton B. Aguiar & Sylvain Gigan, 2022. "Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    12. Bastian Schaefermeier & Gerd Stumme & Tom Hanika, 2021. "Topic space trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5759-5795, July.
    13. Gregory A. Harris & Daniel Abernathy & Lin Lu & Anna Hyre & Alexander Vinel, 2022. "Bringing Clarity to Issues with Adoption of Digital Manufacturing Capabilities: an Analysis of Multiple Independent Studies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 2868-2889, December.
    14. Yoshi Fujiwara & Rubaiyat Islam, 2021. "Bitcoin's Crypto Flow Network," Papers 2106.11446, arXiv.org, revised Jul 2021.
    15. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    16. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    17. Hiroyasu Abe & Hiroshi Yadohisa, 2019. "Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 825-853, December.
    18. Ah-Hyoung Lee & Jihun Lee & Vincent Leung & Lawrence Larson & Arto Nurmikko, 2024. "Patterned electrical brain stimulation by a wireless network of implantable microdevices," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Dong-Mei Zhu & Wai-Ki Ching & Robert J. Elliott & Tak-Kuen Siu & Lianmin Zhang, 2017. "A Higher-order interactive hidden Markov model and its applications," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1055-1069, October.
    20. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50616-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.