IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48735-x.html
   My bibliography  Save this article

Generation of nanobodies from transgenic ‘LamaMice’ lacking an endogenous immunoglobulin repertoire

Author

Listed:
  • Thomas Eden

    (University Medical Center Hamburg-Eppendorf)

  • Alessa Z. Schaffrath

    (University Medical Center Hamburg-Eppendorf)

  • Janusz Wesolowski

    (University Medical Center Hamburg-Eppendorf)

  • Tobias Stähler

    (University Medical Center Hamburg-Eppendorf)

  • Natalie Tode

    (University Medical Center Hamburg-Eppendorf)

  • Nathalie Richter

    (University Medical Center Hamburg-Eppendorf)

  • Waldemar Schäfer

    (University Medical Center Hamburg-Eppendorf)

  • Julia Hambach

    (University Medical Center Hamburg-Eppendorf)

  • Irm Hermans-Borgmeyer

    (University Medical Center Hamburg-Eppendorf)

  • Jannis Woens

    (University Medical Center Hamburg-Eppendorf)

  • Camille M. Gall

    (Radboud University Medical Center)

  • Sabrina Wendler

    (Germany - A part of Proteintech Group)

  • Christian Linke-Winnebeck

    (Germany - A part of Proteintech Group)

  • Martina Stobbe

    (Germany - A part of Proteintech Group)

  • Iwona Budnicki

    (Genovac GmbH)

  • Amelie Wanney

    (Genovac GmbH)

  • Yannic Heitz

    (Genovac GmbH)

  • Lena Schimmelpfennig

    (Genovac GmbH)

  • Laura Schweitzer

    (Genovac GmbH)

  • Dennis Zimmer

    (Genovac GmbH)

  • Erik Stahl

    (Preclinics GmbH)

  • Fabienne Seyfried

    (University Medical Center Hamburg-Eppendorf)

  • Anna J. Gebhardt

    (University Medical Center Hamburg-Eppendorf)

  • Lynn Dieckow

    (University Medical Center Hamburg-Eppendorf)

  • Kristoffer Riecken

    (University Medical Center Hamburg-Eppendorf)

  • Boris Fehse

    (University Medical Center Hamburg-Eppendorf)

  • Peter Bannas

    (University Medical Center Hamburg-Eppendorf)

  • Tim Magnus

    (University Medical Center Hamburg-Eppendorf)

  • Martijn Verdoes

    (Radboud University Medical Center)

  • Carl G. Figdor

    (Radboud University Medical Center)

  • Klaus F. Hartlepp

    (Germany - A part of Proteintech Group)

  • Hubertus Schleer

    (Genovac GmbH)

  • Jonas Füner

    (Preclinics GmbH)

  • Nicola M. Tomas

    (University Medical Center Hamburg-Eppendorf)

  • Friedrich Haag

    (University Medical Center Hamburg-Eppendorf)

  • Björn Rissiek

    (University Medical Center Hamburg-Eppendorf)

  • Anna M. Mann

    (University Medical Center Hamburg-Eppendorf)

  • Stephan Menzel

    (University Medical Center Hamburg-Eppendorf
    University of Bonn)

  • Friedrich Koch-Nolte

    (University Medical Center Hamburg-Eppendorf)

Abstract

Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as ‘LamaMouse’. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.

Suggested Citation

  • Thomas Eden & Alessa Z. Schaffrath & Janusz Wesolowski & Tobias Stähler & Natalie Tode & Nathalie Richter & Waldemar Schäfer & Julia Hambach & Irm Hermans-Borgmeyer & Jannis Woens & Camille M. Gall & , 2024. "Generation of nanobodies from transgenic ‘LamaMice’ lacking an endogenous immunoglobulin repertoire," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48735-x
    DOI: 10.1038/s41467-024-48735-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48735-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48735-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maud Sigoillot & Marie Overtus & Magdalena Grodecka & Daniel Scholl & Abel Garcia-Pino & Toon Laeremans & Lihua He & Els Pardon & Ellen Hildebrandt & Ina Urbatsch & Jan Steyaert & John R. Riordan & Ce, 2019. "Domain-interface dynamics of CFTR revealed by stabilizing nanobodies," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    2. Leo Hanke & Hrishikesh Das & Daniel J. Sheward & Laura Perez Vidakovics & Egon Urgard & Ainhoa Moliner-Morro & Changil Kim & Vivien Karl & Alec Pankow & Natalie L. Smith & Bartlomiej Porebski & Oscar , 2022. "A bispecific monomeric nanobody induces spike trimer dimers and neutralizes SARS-CoV-2 in vivo," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. James E. Voss, 2021. "Engineered single-domain antibodies tackle COVID variants," Nature, Nature, vol. 595(7866), pages 176-178, July.
    4. Xun Chen & Matteo Gentili & Nir Hacohen & Aviv Regev, 2021. "A cell-free nanobody engineering platform rapidly generates SARS-CoV-2 neutralizing nanobodies," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Dean P. Staus & Ryan T. Strachan & Aashish Manglik & Biswaranjan Pani & Alem W. Kahsai & Tae Hun Kim & Laura M. Wingler & Seungkirl Ahn & Arnab Chatterjee & Ali Masoudi & Andrew C. Kruse & Els Pardon , 2016. "Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation," Nature, Nature, vol. 535(7612), pages 448-452, July.
    6. Jianliang Xu & Kai Xu & Seolkyoung Jung & Andrea Conte & Jenna Lieberman & Frauke Muecksch & Julio Cesar Cetrulo Lorenzi & Solji Park & Fabian Schmidt & Zijun Wang & Yaoxing Huang & Yang Luo & Manoj S, 2021. "Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants," Nature, Nature, vol. 595(7866), pages 278-282, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingxi Li & Yifei Ren & Zhen Qin Aw & Bo Chen & Ziqing Yang & Yuqing Lei & Lin Cheng & Qingtai Liang & Junxian Hong & Yiling Yang & Jing Chen & Yi Hao Wong & Jing Wei & Sisi Shan & Senyan Zhang & Jiwa, 2022. "Broadly neutralizing and protective nanobodies against SARS-CoV-2 Omicron subvariants BA.1, BA.2, and BA.4/5 and diverse sarbecoviruses," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Jason Gorman & Crystal Sao-Fong Cheung & Zhijian Duan & Li Ou & Maple Wang & Xuejun Chen & Cheng Cheng & Andrea Biju & Yaping Sun & Pengfei Wang & Yongping Yang & Baoshan Zhang & Jeffrey C. Boyington , 2024. "Cleavage-intermediate Lassa virus trimer elicits neutralizing responses, identifies neutralizing nanobodies, and reveals an apex-situated site-of-vulnerability," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Anna R. Mäkelä & Hasan Uğurlu & Liina Hannula & Ravi Kant & Petja Salminen & Riku Fagerlund & Sanna Mäki & Anu Haveri & Tomas Strandin & Lauri Kareinen & Jussi Hepojoki & Suvi Kuivanen & Lev Levanov &, 2023. "Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Jia Duan & Peiyu Xu & Huibing Zhang & Xiaodong Luan & Jiaqi Yang & Xinheng He & Chunyou Mao & Dan-Dan Shen & Yujie Ji & Xi Cheng & Hualiang Jiang & Yi Jiang & Shuyang Zhang & Yan Zhang & H. Eric Xu, 2023. "Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Wei-Hung Chen & Agnes Hajduczki & Elizabeth J. Martinez & Hongjun Bai & Hanover Matz & Thomas M. Hill & Eric Lewitus & William C. Chang & Layla Dawit & Caroline E. Peterson & Phyllis A. Rees & Adelola, 2023. "Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Tobias Benkel & Mirjam Zimmermann & Julian Zeiner & Sergi Bravo & Nicole Merten & Victor Jun Yu Lim & Edda Sofie Fabienne Matthees & Julia Drube & Elke Miess-Tanneberg & Daniela Malan & Martyna Szpako, 2022. "How Carvedilol activates β2-adrenoceptors," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Michael Schoof & Lan Wang & J. Zachery Cogan & Rosalie E. Lawrence & Morgane Boone & Jennifer Deborah Wuerth & Adam Frost & Peter Walter, 2021. "Viral evasion of the integrated stress response through antagonism of eIF2-P binding to eIF2B," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    8. Arum Wu & David Salom & John D. Hong & Aleksander Tworak & Kohei Watanabe & Els Pardon & Jan Steyaert & Hideki Kandori & Kota Katayama & Philip D. Kiser & Krzysztof Palczewski, 2023. "Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Baptiste Fischer & Tomasz Uchański & Aidana Sheryazdanova & Simon Gonzalez & Alexander N. Volkov & Elke Brosens & Thomas Zögg & Valentina Kalichuk & Steven Ballet & Wim Versées & Anna A. Sablina & Els, 2024. "Allosteric nanobodies to study the interactions between SOS1 and RAS," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48735-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.