IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50287-z.html
   My bibliography  Save this article

Unidirectional guided-wave-driven metasurfaces for arbitrary wavefront control

Author

Listed:
  • Shiqing Li

    (Zhejiang University of Technology)

  • Kosmas L. Tsakmakidis

    (National and Kapodistrian University of Athens Panepistimioupolis)

  • Tao Jiang

    (University of Electronic Science and Technology of China)

  • Qian Shen

    (Zhejiang University of Technology)

  • Hang Zhang

    (Zhejiang University of Technology)

  • Jinhua Yan

    (Zhejiang University of Technology)

  • Shulin Sun

    (Fudan University)

  • Linfang Shen

    (Zhejiang University of Technology)

Abstract

Metasurfaces are capable of fully reshaping the wavefronts of incident beams in desired manners. However, the requirement for external light excitation and the resonant nature of their meta-atoms, make challenging their on-chip integration. Here, we introduce the concept and design of a fresh class of metasurfaces, driven by unidirectional guided waves, capable of arbitrary wavefront control based on the unique dispersion properties of unidirectional guided waves rather than resonant meta-atoms. Upon experimentally demonstrating the feasibility of our designs in the microwave regime, we numerically validate the introduced principle through the design of several microwave meta-devices using metal-air-gyromagnetic unidirectional surface magneto-plasmons, agilely converting unidirectional guided modes into the wavefronts of 3D Bessel beams, focused waves, and controllable vortex beams. We, further, numerically demonstrate sub-diffraction focusing, which is beyond the capability of conventional metasurfaces. Our unfamiliar yet practical designs may enable full, broadband manipulation of electromagnetic waves on deep subwavelength scales.

Suggested Citation

  • Shiqing Li & Kosmas L. Tsakmakidis & Tao Jiang & Qian Shen & Hang Zhang & Jinhua Yan & Shulin Sun & Linfang Shen, 2024. "Unidirectional guided-wave-driven metasurfaces for arbitrary wavefront control," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50287-z
    DOI: 10.1038/s41467-024-50287-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50287-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50287-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianzhong Chen & Lingling Huang & Holger Mühlenbernd & Guixin Li & Benfeng Bai & Qiaofeng Tan & Guofan Jin & Cheng-Wei Qiu & Shuang Zhang & Thomas Zentgraf, 2012. "Dual-polarity plasmonic metalens for visible light," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. William L. Barnes & Alain Dereux & Thomas W. Ebbesen, 2003. "Surface plasmon subwavelength optics," Nature, Nature, vol. 424(6950), pages 824-830, August.
    3. Sergey I. Bozhevolnyi & Valentyn S. Volkov & Eloïse Devaux & Jean-Yves Laluet & Thomas W. Ebbesen, 2006. "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Nature, vol. 440(7083), pages 508-511, March.
    4. Gengyu Xu & Adam Overvig & Yoshiaki Kasahara & Enrica Martini & Stefano Maci & Andrea Alù, 2023. "Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Siddharth Buddhiraju & Yu Shi & Alex Song & Casey Wojcik & Momchil Minkov & Ian A. D. Williamson & Avik Dutt & Shanhui Fan, 2020. "Absence of unidirectionally propagating surface plasmon-polaritons at nonreciprocal metal-dielectric interfaces," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yen-Hsiang & Shih, Fu-Yuan & Lee, Ming-Tsang & Lee, Yung-Chun & Chen, Yu-Bin, 2020. "Development of lightweight energy-saving glass and its near-field electromagnetic analysis," Energy, Elsevier, vol. 193(C).
    2. Minkyung Kim & Dasol Lee & Younghwan Yang & Yeseul Kim & Junsuk Rho, 2022. "Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Xingwang Zhang & Xiaojie Zhang & Yao Duan & Lidan Zhang & Xingjie Ni, 2023. "All-optical geometric image transformations enabled by ultrathin metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Olga Guselnikova & Andrii Trelin & Yunqing Kang & Pavel Postnikov & Makoto Kobashi & Asuka Suzuki & Lok Kumar Shrestha & Joel Henzie & Yusuke Yamauchi, 2024. "Pretreatment-free SERS sensing of microplastics using a self-attention-based neural network on hierarchically porous Ag foams," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Sergejs Boroviks & Zhan-Hong Lin & Vladimir A. Zenin & Mario Ziegler & Andrea Dellith & P. A. D. Gonçalves & Christian Wolff & Sergey I. Bozhevolnyi & Jer-Shing Huang & N. Asger Mortensen, 2022. "Extremely confined gap plasmon modes: when nonlocality matters," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Day, Joseph & Senthilarasu, S. & Mallick, Tapas K., 2019. "Improving spectral modification for applications in solar cells: A review," Renewable Energy, Elsevier, vol. 132(C), pages 186-205.
    7. Xinxin Gao & Ze Gu & Qian Ma & Bao Jie Chen & Kam-Man Shum & Wen Yi Cui & Jian Wei You & Tie Jun Cui & Chi Hou Chan, 2024. "Terahertz spoof plasmonic neural network for diffractive information recognition and processing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jiménez-Calvo, Pablo & Caps, Valérie & Keller, Valérie, 2021. "Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Rui Pu & Qiuqiang Zhan & Xingyun Peng & Siying Liu & Xin Guo & Liangliang Liang & Xian Qin & Ziqing Winston Zhao & Xiaogang Liu, 2022. "Super-resolution microscopy enabled by high-efficiency surface-migration emission depletion," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Xiangdong Guo & Chenchen Wu & Shu Zhang & Debo Hu & Shunping Zhang & Qiao Jiang & Xiaokang Dai & Yu Duan & Xiaoxia Yang & Zhipei Sun & Shuang Zhang & Hongxing Xu & Qing Dai, 2023. "Mid-infrared analogue polaritonic reversed Cherenkov radiation in natural anisotropic crystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Dan, Atasi & Barshilia, Harish C. & Chattopadhyay, Kamanio & Basu, Bikramjit, 2017. "Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1050-1077.
    12. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Xiao Tan & Dehai Dou & Lay-Lay Chua & Rui-Qi Png & Daniel G. Congrave & Hugo Bronstein & Martin Baumgarten & Yungui Li & Paul W. M. Blom & Gert-Jan A. H. Wetzelaer, 2024. "Inverted device architecture for high efficiency single-layer organic light-emitting diodes with imbalanced charge transport," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    14. Gyeongwon Kang & Shu Hu & Chenyang Guo & Rakesh Arul & Sarah M. Sibug-Torres & Jeremy J. Baumberg, 2024. "Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Rishi Verma & Gunjan Sharma & Vivek Polshettiwar, 2024. "The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-45, December.
    16. Ruixuan Zheng & Ruhao Pan & Guangzhou Geng & Qiang Jiang & Shuo Du & Lingling Huang & Changzhi Gu & Junjie Li, 2022. "Active multiband varifocal metalenses based on orbital angular momentum division multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Hsin-Cheng Lee & Shich-Chuan Wu & Tien-Chung Yang & Ta-Jen Yen, 2010. "Efficiently Harvesting Sun Light for Silicon Solar Cells through Advanced Optical Couplers and A Radial p-n Junction Structure," Energies, MDPI, vol. 3(4), pages 1-19, April.
    18. Hanchao Teng & Na Chen & Hai Hu & F. Javier García de Abajo & Qing Dai, 2024. "Steering and cloaking of hyperbolic polaritons at deep-subwavelength scales," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    19. Hyeongwoo Lee & Yeonjeong Koo & Shailabh Kumar & Yunjo Jeong & Dong Gwon Heo & Soo Ho Choi & Huitae Joo & Mingu Kang & Radwanul Hasan Siddique & Ki Kang Kim & Hong Seok Lee & Sangmin An & Hyuck Choo &, 2023. "All-optical control of high-purity trions in nanoscale waveguide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Shah, S. & Masood, W. & Siddiq, M. & Rizvi, H., 2024. "Nonlinear ion acoustic waves in dense magnetoplasmas: Analyzing interaction solutions of the KdV equation using Wronskian formalism for electron trapping with Landau diamagnetism and thermal excitatio," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50287-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.