IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43981-x.html
   My bibliography  Save this article

All-optical geometric image transformations enabled by ultrathin metasurfaces

Author

Listed:
  • Xingwang Zhang

    (The Pennsylvania State University)

  • Xiaojie Zhang

    (The Pennsylvania State University)

  • Yao Duan

    (The Pennsylvania State University)

  • Lidan Zhang

    (The Pennsylvania State University)

  • Xingjie Ni

    (The Pennsylvania State University)

Abstract

Image processing plays a vital role in artificial visual systems, which have diverse applications in areas such as biomedical imaging and machine vision. In particular, optical analog image processing is of great interest because of its parallel processing capability and low power consumption. Here, we present ultra-compact metasurfaces performing all-optical geometric image transformations, which are essential for image processing to correct image distortions, create special image effects, and morph one image into another. We show that our metasurfaces can realize binary image transformations by modifying the spatial relationship between pixels and converting binary images from Cartesian to log-polar coordinates with unparalleled advantages for scale- and rotation-invariant image preprocessing. Furthermore, we extend our approach to grayscale image transformations and convert an image with Gaussian intensity profile into another image with flat-top intensity profile. Our technique will potentially unlock new opportunities for various applications such as target tracking and laser manufacturing.

Suggested Citation

  • Xingwang Zhang & Xiaojie Zhang & Yao Duan & Lidan Zhang & Xingjie Ni, 2023. "All-optical geometric image transformations enabled by ultrathin metasurfaces," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43981-x
    DOI: 10.1038/s41467-023-43981-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43981-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43981-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xianzhong Chen & Lingling Huang & Holger Mühlenbernd & Guixin Li & Benfeng Bai & Qiaofeng Tan & Guofan Jin & Cheng-Wei Qiu & Shuang Zhang & Thomas Zentgraf, 2012. "Dual-polarity plasmonic metalens for visible light," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. Saman Jahani & Sangsik Kim & Jonathan Atkinson & Justin C. Wirth & Farid Kalhor & Abdullah Al Noman & Ward D. Newman & Prashant Shekhar & Kyunghun Han & Vien Van & Raymond G. DeCorby & Lukas Chrostows, 2018. "Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minkyung Kim & Dasol Lee & Younghwan Yang & Yeseul Kim & Junsuk Rho, 2022. "Reaching the highest efficiency of spin Hall effect of light in the near-infrared using all-dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Xia Hua & Yujie Wang & Shuming Wang & Xiujuan Zou & You Zhou & Lin Li & Feng Yan & Xun Cao & Shumin Xiao & Din Ping Tsai & Jiecai Han & Zhenlin Wang & Shining Zhu, 2022. "Ultra-compact snapshot spectral light-field imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ruixuan Zheng & Ruhao Pan & Guangzhou Geng & Qiang Jiang & Shuo Du & Lingling Huang & Changzhi Gu & Junjie Li, 2022. "Active multiband varifocal metalenses based on orbital angular momentum division multiplexing," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Shiqing Li & Kosmas L. Tsakmakidis & Tao Jiang & Qian Shen & Hang Zhang & Jinhua Yan & Shulin Sun & Linfang Shen, 2024. "Unidirectional guided-wave-driven metasurfaces for arbitrary wavefront control," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43981-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.