IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50165-8.html
   My bibliography  Save this article

Neurovascular coupling during hypercapnia in cerebral blood flow regulation

Author

Listed:
  • Grant R. Gordon

    (University of Calgary)

Abstract

Neuronal activity consumes cellular energy and generates carbon dioxide (CO2). To counter this metabolic challenge, synaptic signalling communicates with nearby microvasculature to increase local blood flow. Is this process solely based on feedforward synaptic signalling, or is the generated CO2 also involved? This question was addressed in mice in a new Nature Communications publication by Tournissac and colleagues where they showed that neurovascular coupling is not affected by exogenous CO2 or its associated acidification.

Suggested Citation

  • Grant R. Gordon, 2024. "Neurovascular coupling during hypercapnia in cerebral blood flow regulation," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50165-8
    DOI: 10.1038/s41467-024-50165-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50165-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50165-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davide Boido & Ravi L. Rungta & Bruno-Félix Osmanski & Morgane Roche & Tomokazu Tsurugizawa & Denis Bihan & Luisa Ciobanu & Serge Charpak, 2019. "Mesoscopic and microscopic imaging of sensory responses in the same animal," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Marine Tournissac & Emmanuelle Chaigneau & Sonia Pfister & Ali-Kemal Aydin & Yannick Goulam Houssen & Philip O’Herron & Jessica Filosa & Mayeul Collot & Anne Joutel & Serge Charpak, 2024. "Neurovascular coupling and CO2 interrogate distinct vascular regulations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Patrick S. Hosford & Jack A. Wells & Shereen Nizari & Isabel N. Christie & Shefeeq M. Theparambil & Pablo A. Castro & Anna Hadjihambi & L. Felipe Barros & Iván Ruminot & Mark F. Lythgoe & Alexander V., 2022. "CO2 signaling mediates neurovascular coupling in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marine Tournissac & Emmanuelle Chaigneau & Sonia Pfister & Ali-Kemal Aydin & Yannick Goulam Houssen & Philip O’Herron & Jessica Filosa & Mayeul Collot & Anne Joutel & Serge Charpak, 2024. "Neurovascular coupling and CO2 interrogate distinct vascular regulations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xin Rui Lim & Mohammad M. Abd-Alhaseeb & Michael Ippolito & Masayo Koide & Amanda J. Senatore & Curtis Plante & Ashwini Hariharan & Nick Weir & Thomas A. Longden & Kathryn A. Laprade & James M. Staffo, 2024. "Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Quanyu Zhou & Chaim Glück & Lin Tang & Lukas Glandorf & Jeanne Droux & Mohamad El Amki & Susanne Wegener & Bruno Weber & Daniel Razansky & Zhenyue Chen, 2024. "Cortex-wide transcranial localization microscopy with fluorescently labeled red blood cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Adam Institoris & Milène Vandal & Govind Peringod & Christy Catalano & Cam Ha Tran & Xinzhu Yu & Frank Visser & Cheryl Breiteneder & Leonardo Molina & Baljit S. Khakh & Minh Dang Nguyen & Roger J. Tho, 2022. "Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Quanyu Zhou & Zhenyue Chen & Yu-Hang Liu & Mohamad El Amki & Chaim Glück & Jeanne Droux & Michael Reiss & Bruno Weber & Susanne Wegener & Daniel Razansky, 2022. "Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50165-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.