IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47892-3.html
   My bibliography  Save this article

Cortex-wide transcranial localization microscopy with fluorescently labeled red blood cells

Author

Listed:
  • Quanyu Zhou

    (University of Zurich
    ETH Zurich)

  • Chaim Glück

    (University of Zurich
    Zurich Neuroscience Center)

  • Lin Tang

    (University of Zurich
    ETH Zurich)

  • Lukas Glandorf

    (University of Zurich
    ETH Zurich)

  • Jeanne Droux

    (Zurich Neuroscience Center
    University Hospital and University of Zurich)

  • Mohamad El Amki

    (Zurich Neuroscience Center
    University Hospital and University of Zurich)

  • Susanne Wegener

    (Zurich Neuroscience Center
    University Hospital and University of Zurich)

  • Bruno Weber

    (University of Zurich
    Zurich Neuroscience Center)

  • Daniel Razansky

    (University of Zurich
    ETH Zurich
    Zurich Neuroscience Center)

  • Zhenyue Chen

    (University of Zurich
    ETH Zurich)

Abstract

Large-scale imaging of brain activity with high spatio-temporal resolution is crucial for advancing our understanding of brain function. The existing neuroimaging techniques are largely limited by restricted field of view, slow imaging speed, or otherwise do not have the adequate spatial resolution to capture brain activities on a capillary and cellular level. To address these limitations, we introduce fluorescence localization microscopy aided with sparsely-labeled red blood cells for cortex-wide morphological and functional cerebral angiography with 4.9 µm spatial resolution and 1 s temporal resolution. When combined with fluorescence calcium imaging, the proposed method enables extended recordings of stimulus-evoked neuro-vascular changes in the murine brain while providing simultaneous multiparametric readings of intracellular neuronal activity, blood flow velocity/direction/volume, and vessel diameter. Owing to its simplicity and versatility, the proposed approach will become an invaluable tool for deciphering the regulation of cortical microcirculation and neurovascular coupling in health and disease.

Suggested Citation

  • Quanyu Zhou & Chaim Glück & Lin Tang & Lukas Glandorf & Jeanne Droux & Mohamad El Amki & Susanne Wegener & Bruno Weber & Daniel Razansky & Zhenyue Chen, 2024. "Cortex-wide transcranial localization microscopy with fluorescently labeled red blood cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47892-3
    DOI: 10.1038/s41467-024-47892-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47892-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47892-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davide Boido & Ravi L. Rungta & Bruno-Félix Osmanski & Morgane Roche & Tomokazu Tsurugizawa & Denis Bihan & Luisa Ciobanu & Serge Charpak, 2019. "Mesoscopic and microscopic imaging of sensory responses in the same animal," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Jianian Lin & Zongyue Cheng & Guang Yang & Meng Cui, 2022. "Optical gearbox enabled versatile multiscale high-throughput multiphoton functional imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grant R. Gordon, 2024. "Neurovascular coupling during hypercapnia in cerebral blood flow regulation," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    2. Yuting Li & Zongyue Cheng & Chenmao Wang & Jianian Lin & Hehai Jiang & Meng Cui, 2024. "Geometric transformation adaptive optics (GTAO) for volumetric deep brain imaging through gradient-index lenses," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Marine Tournissac & Emmanuelle Chaigneau & Sonia Pfister & Ali-Kemal Aydin & Yannick Goulam Houssen & Philip O’Herron & Jessica Filosa & Mayeul Collot & Anne Joutel & Serge Charpak, 2024. "Neurovascular coupling and CO2 interrogate distinct vascular regulations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Quanyu Zhou & Zhenyue Chen & Yu-Hang Liu & Mohamad El Amki & Chaim Glück & Jeanne Droux & Michael Reiss & Bruno Weber & Susanne Wegener & Daniel Razansky, 2022. "Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47892-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.