IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54063-x.html
   My bibliography  Save this article

Fate of methane in canals draining tropical peatlands

Author

Listed:
  • Clarice R. Perryman

    (Stanford University)

  • Jennifer C. Bowen

    (Stanford University)

  • Julie Shahan

    (Stanford University)

  • Desi Silviani P.A.B

    (Tanjungpura University)

  • Erin Dayanti

    (Tanjungpura University)

  • Yulita Andriyani

    (Tanjungpura University)

  • Adibtya Asyhari

    (Yayasan Konservasi Alam Nusantara)

  • Adi Gangga

    (Yayasan Konservasi Alam Nusantara)

  • Nisa Novita

    (Yayasan Konservasi Alam Nusantara
    The Nature Conservancy)

  • Gusti Z. Anshari

    (Tanjungpura University
    Tanjungpura University)

  • Alison M. Hoyt

    (Stanford University)

Abstract

Tropical wetlands and freshwaters are major contributors to the growing atmospheric methane (CH4) burden. Extensive peatland drainage has lowered CH4 emissions from peat soils in Southeast Asia, but the canals draining these peatlands may be hotspots of CH4 emissions. Alternatively, CH4 oxidation (consumption) by methanotrophic microorganisms may attenuate emissions. Here, we used laboratory experiments and a synoptic survey of the isotopic composition of CH4 in 34 canals across West Kalimantan, Indonesia to quantify the proportion of CH4 that is consumed and therefore not emitted to the atmosphere. We find that CH4 oxidation mitigates 76.4 ± 12.0% of potential canal emissions, reducing emissions by ~70 mg CH4 m−2 d−1. Methane consumption also significantly impacts the stable isotopic fingerprint of canal CH4 emissions. As canals drain over 65% of peatlands in Southeast Asia, our results suggest that CH4 oxidation significantly influences landscape-scale CH4 emissions from these ecosystems.

Suggested Citation

  • Clarice R. Perryman & Jennifer C. Bowen & Julie Shahan & Desi Silviani P.A.B & Erin Dayanti & Yulita Andriyani & Adibtya Asyhari & Adi Gangga & Nisa Novita & Gusti Z. Anshari & Alison M. Hoyt, 2024. "Fate of methane in canals draining tropical peatlands," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54063-x
    DOI: 10.1038/s41467-024-54063-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54063-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54063-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liang Feng & Paul I. Palmer & Sihong Zhu & Robert J. Parker & Yi Liu, 2022. "Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Hannah V. Cooper & Stephanie Evers & Paul Aplin & Neil Crout & Mohd Puat Dahalan & Sofie Sjogersten, 2020. "Author Correction: Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    3. Hannah V. Cooper & Stephanie Evers & Paul Aplin & Neil Crout & Mohd Puat Bin Dahalan & Sofie Sjogersten, 2020. "Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Taryono Darusman & Daniel Murdiyarso & Impron & Iswandi Anas, 2023. "Effect of rewetting degraded peatlands on carbon fluxes: a meta-analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-20, March.
    5. Gerard Rocher-Ros & Emily H. Stanley & Luke C. Loken & Nora J. Casson & Peter A. Raymond & Shaoda Liu & Giuseppe Amatulli & Ryan A. Sponseller, 2023. "Global methane emissions from rivers and streams," Nature, Nature, vol. 621(7979), pages 530-535, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendrawan, Dienda & Musshoff, Oliver, 2024. "Smallholders' preferred attributes in a subsidy program for replanting overaged oil palm plantations in Indonesia," Ecological Economics, Elsevier, vol. 224(C).
    2. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    3. Sascha Nick & Philippe Thalmann, 2022. "Towards True Climate Neutrality for Global Aviation: A Negative Emissions Fund for Airlines," JRFM, MDPI, vol. 15(11), pages 1-18, November.
    4. Zhao, Jing & Elmore, Andrew J. & Lee, Janice Ser Huay & Numata, Izaya & Zhang, Xin & Cochrane, Mark A., 2023. "Replanting and yield increase strategies for alleviating the potential decline in palm oil production in Indonesia," Agricultural Systems, Elsevier, vol. 210(C).
    5. Pulighe, Giuseppe, 2023. "Navigating the Path to Sustainable Oil Palm Cultivation: Addressing Nexus Challenges and Solutions," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(2), May.
    6. Phuang, Zhen Xin & Woon, Kok Sin & Wong, Khai Jian & Liew, Peng Yen & Hanafiah, Marlia Mohd, 2021. "Unlocking the environmental hotspots of palm biodiesel upstream production in Malaysia via life cycle assessment," Energy, Elsevier, vol. 232(C).
    7. Jie Ye & Minghan Zhuang & Mingqiu Hong & Dong Zhang & Guoping Ren & Andong Hu & Chaohui Yang & Zhen He & Shungui Zhou, 2024. "Methanogenesis in the presence of oxygenic photosynthetic bacteria may contribute to global methane cycle," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Qinyi Li & Rafael P. Fernandez & Ryan Hossaini & Fernando Iglesias-Suarez & Carlos A. Cuevas & Eric C. Apel & Douglas E. Kinnison & Jean-François Lamarque & Alfonso Saiz-Lopez, 2022. "Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yizhen Wang & Dungang Gu & Zaiwei Liu & Jiaqi Lu & Tingting Hu & Guanghui Li & Minsheng Huang & Yan He, 2024. "Characteristics and Impacts of Pollution and Remediation on Riverine Greenhouse Gas Emissions: A Review," Sustainability, MDPI, vol. 16(24), pages 1-24, December.
    10. Gren, Ing-Marie, 2024. "A trading market for uncertain carbon removal by land use in the EU," Forest Policy and Economics, Elsevier, vol. 159(C).
    11. Barut, Abdulkadir & Kaya, Emine & Bekun, Festus Victor & Cengiz, Sevgi, 2023. "Environmental sustainability amidst financial inclusion in five fragile economies: Evidence from lens of environmental Kuznets curve," Energy, Elsevier, vol. 269(C).
    12. McNicol, Louise C. & Williams, Non G. & Chadwick, Dave & Styles, David & Rees, Robert M. & Ramsey, Rachael & Williams, A. Prysor, 2024. "Net Zero requires ambitious greenhouse gas emission reductions on beef and sheep farms coordinated with afforestation and other land use change measures," Agricultural Systems, Elsevier, vol. 215(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54063-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.