IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50025-5.html
   My bibliography  Save this article

Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein

Author

Listed:
  • Hao-Yu Chuang

    (Academia Sinica
    Academia Sinica
    National Tsing Hua University)

  • Ruei-Yu He

    (Academia Sinica)

  • Yung-An Huang

    (Academia Sinica)

  • Wan-Ting Hsu

    (Academia Sinica)

  • Ya-Jen Cheng

    (Academia Sinica
    Academia Sinica)

  • Zheng-Rong Guo

    (Academia Sinica)

  • Niaz Wali

    (Academia Sinica)

  • Ing-Shouh Hwang

    (Academia Sinica)

  • Jiun-Jie Shie

    (Academia Sinica)

  • Joseph Jen-Tse Huang

    (Academia Sinica
    Academia Sinica
    Academia Sinica
    National Chiayi University)

Abstract

The assembly and disassembly of biomolecular condensates are crucial for the subcellular compartmentalization of biomolecules in the control of cellular reactions. Recently, a correlation has been discovered between the phase transition of condensates and their maturation (aggregation) process in diseases. Therefore, modulating the phase of condensates to unravel the roles of condensation has become a matter of interest. Here, we create a peptide-based phase modulator, JSF1, which forms droplets in the dark and transforms into amyloid-like fibrils upon photoinitiation, as evidenced by their distinctive nanomechanical and dynamic properties. JSF1 is found to effectively enhance the condensation of purified fused in sarcoma (FUS) protein and, upon light exposure, induce its fibrilization. We also use JSF1 to modulate the biophysical states of FUS condensates in live cells and elucidate the relationship between FUS phase transition and FUS proteinopathy, thereby shedding light on the effect of protein phase transition on cellular function and malfunction.

Suggested Citation

  • Hao-Yu Chuang & Ruei-Yu He & Yung-An Huang & Wan-Ting Hsu & Ya-Jen Cheng & Zheng-Rong Guo & Niaz Wali & Ing-Shouh Hwang & Jiun-Jie Shie & Joseph Jen-Tse Huang, 2024. "Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50025-5
    DOI: 10.1038/s41467-024-50025-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50025-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50025-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin S. Schuster & Ellen H. Reed & Ranganath Parthasarathy & Craig N. Jahnke & Reese M. Caldwell & Jessica G. Bermudez & Holly Ramage & Matthew C. Good & Daniel A. Hammer, 2018. "Controllable protein phase separation and modular recruitment to form responsive membraneless organelles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. W. Michael Babinchak & Benjamin K. Dumm & Sarah Venus & Solomiia Boyko & Andrea A. Putnam & Eckhard Jankowsky & Witold K. Surewicz, 2020. "Small molecules as potent biphasic modulators of protein liquid-liquid phase separation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William E. Arter & Runzhang Qi & Nadia A. Erkamp & Georg Krainer & Kieran Didi & Timothy J. Welsh & Julia Acker & Jonathan Nixon-Abell & Seema Qamar & Jordina Guillén-Boixet & Titus M. Franzmann & Dav, 2022. "Biomolecular condensate phase diagrams with a combinatorial microdroplet platform," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jaimie Marie Stewart & Shiyi Li & Anli A. Tang & Melissa Ann Klocke & Martin Vincent Gobry & Giacomo Fabrini & Lorenzo Michele & Paul W. K. Rothemund & Elisa Franco, 2024. "Modular RNA motifs for orthogonal phase separated compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Ellen H. Brumbaugh-Reed & Yang Gao & Kazuhiro Aoki & Jared E. Toettcher, 2024. "Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Fernando Muzzopappa & Johan Hummert & Michela Anfossi & Stanimir Asenov Tashev & Dirk-Peter Herten & Fabian Erdel, 2022. "Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Tomoya Maruyama & Jing Gong & Masahiro Takinoue, 2024. "Temporally controlled multistep division of DNA droplets for dynamic artificial cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Wenwen Yu & Ke Jin & Dandan Wang & Nankai Wang & Yangyang Li & Yanfeng Liu & Jianghua Li & Guocheng Du & Xueqin Lv & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2024. "De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Vivian Yeong & Jou-wen Wang & Justin M. Horn & Allie C. Obermeyer, 2022. "Intracellular phase separation of globular proteins facilitated by short cationic peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Xi Li & Linwei Yu & Xikai Liu & Tianyi Shi & Yu Zhang & Yushuo Xiao & Chen Wang & Liangliang Song & Ning Li & Xinran Liu & Yuchen Chen & Robert B. Petersen & Xiang Cheng & Weikang Xue & Yanxun V. Yu &, 2024. "β-synuclein regulates the phase transitions and amyloid conversion of α-synuclein," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Marcos Gil-Garcia & Ana I. Benítez-Mateos & Marcell Papp & Florence Stoffel & Chiara Morelli & Karl Normak & Katarzyna Makasewicz & Lenka Faltova & Francesca Paradisi & Paolo Arosio, 2024. "Local environment in biomolecular condensates modulates enzymatic activity across length scales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Chenyang Lan & Juhyeong Kim & Svenja Ulferts & Fernando Aprile-Garcia & Sophie Weyrauch & Abhinaya Anandamurugan & Robert Grosse & Ritwick Sawarkar & Aleks Reinhardt & Thorsten Hugel, 2023. "Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Jun Sun & Jiale Qu & Cai Zhao & Xinyao Zhang & Xinyu Liu & Jia Wang & Chao Wei & Xinyi Liu & Mulan Wang & Pengguihang Zeng & Xiuxiao Tang & Xiaoru Ling & Li Qing & Shaoshuai Jiang & Jiahao Chen & Tara, 2024. "Precise prediction of phase-separation key residues by machine learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Hong Zhang & Huazhang Guo & Danni Li & Yiling Zhang & Shengnan Zhang & Wenyan Kang & Cong Liu & Weidong Le & Liang Wang & Dan Li & Bin Dai, 2024. "Halogen doped graphene quantum dots modulate TDP-43 phase separation and aggregation in the nucleus," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Manjia Li & Byung Min Park & Xin Dai & Yingjie Xu & Jinqing Huang & Fei Sun, 2022. "Controlling synthetic membraneless organelles by a red-light-dependent singlet oxygen-generating protein," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50025-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.