IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35529-2.html
   My bibliography  Save this article

Intracellular phase separation of globular proteins facilitated by short cationic peptides

Author

Listed:
  • Vivian Yeong

    (Columbia University)

  • Jou-wen Wang

    (Columbia University)

  • Justin M. Horn

    (Columbia University)

  • Allie C. Obermeyer

    (Columbia University)

Abstract

Phase separation provides intracellular organization and underlies a variety of cellular processes. These biomolecular condensates exhibit distinct physical and material properties. Current strategies for engineering condensate formation include using intrinsically disordered domains and altering protein surface charge by chemical supercharging or site-specific mutagenesis. We propose adding to this toolbox designer peptide tags that provide several potential advantages for engineering protein phase separation in bacteria. Herein, we demonstrate the use of short cationic peptide tags for sequestration of proteins of interest into bacterial condensates and provide a foundational study for their development as tools for condensate engineering. Using a panel of GFP variants, we demonstrate how cationic tag and globular domain charge contribute to intracellular phase separation in E. coli and observe that the tag can affect condensate disassembly at a given net charge near the phase separation boundary. We showcase the broad applicability of these tags by appending them onto enzymes and demonstrating that the sequestered enzymes remain catalytically active.

Suggested Citation

  • Vivian Yeong & Jou-wen Wang & Justin M. Horn & Allie C. Obermeyer, 2022. "Intracellular phase separation of globular proteins facilitated by short cationic peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35529-2
    DOI: 10.1038/s41467-022-35529-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35529-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35529-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin S. Schuster & Ellen H. Reed & Ranganath Parthasarathy & Craig N. Jahnke & Reese M. Caldwell & Jessica G. Bermudez & Holly Ramage & Matthew C. Good & Daniel A. Hammer, 2018. "Controllable protein phase separation and modular recruitment to form responsive membraneless organelles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaimie Marie Stewart & Shiyi Li & Anli A. Tang & Melissa Ann Klocke & Martin Vincent Gobry & Giacomo Fabrini & Lorenzo Michele & Paul W. K. Rothemund & Elisa Franco, 2024. "Modular RNA motifs for orthogonal phase separated compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ellen H. Brumbaugh-Reed & Yang Gao & Kazuhiro Aoki & Jared E. Toettcher, 2024. "Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Fernando Muzzopappa & Johan Hummert & Michela Anfossi & Stanimir Asenov Tashev & Dirk-Peter Herten & Fabian Erdel, 2022. "Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Tomoya Maruyama & Jing Gong & Masahiro Takinoue, 2024. "Temporally controlled multistep division of DNA droplets for dynamic artificial cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Wenwen Yu & Ke Jin & Dandan Wang & Nankai Wang & Yangyang Li & Yanfeng Liu & Jianghua Li & Guocheng Du & Xueqin Lv & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2024. "De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Marcos Gil-Garcia & Ana I. Benítez-Mateos & Marcell Papp & Florence Stoffel & Chiara Morelli & Karl Normak & Katarzyna Makasewicz & Lenka Faltova & Francesca Paradisi & Paolo Arosio, 2024. "Local environment in biomolecular condensates modulates enzymatic activity across length scales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Hao-Yu Chuang & Ruei-Yu He & Yung-An Huang & Wan-Ting Hsu & Ya-Jen Cheng & Zheng-Rong Guo & Niaz Wali & Ing-Shouh Hwang & Jiun-Jie Shie & Joseph Jen-Tse Huang, 2024. "Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Manjia Li & Byung Min Park & Xin Dai & Yingjie Xu & Jinqing Huang & Fei Sun, 2022. "Controlling synthetic membraneless organelles by a red-light-dependent singlet oxygen-generating protein," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35529-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.