IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05403-1.html
   My bibliography  Save this article

Controllable protein phase separation and modular recruitment to form responsive membraneless organelles

Author

Listed:
  • Benjamin S. Schuster

    (University of Pennsylvania)

  • Ellen H. Reed

    (University of Pennsylvania)

  • Ranganath Parthasarathy

    (University of Pennsylvania)

  • Craig N. Jahnke

    (University of Pennsylvania)

  • Reese M. Caldwell

    (University of Pennsylvania)

  • Jessica G. Bermudez

    (University of Pennsylvania)

  • Holly Ramage

    (University of Pennsylvania)

  • Matthew C. Good

    (University of Pennsylvania
    University of Pennsylvania)

  • Daniel A. Hammer

    (University of Pennsylvania
    University of Pennsylvania)

Abstract

Many intrinsically disordered proteins self-assemble into liquid droplets that function as membraneless organelles. Because of their biological importance and ability to colocalize molecules at high concentrations, these protein compartments represent a compelling target for bio-inspired materials engineering. Here we manipulated the intrinsically disordered, arginine/glycine-rich RGG domain from the P granule protein LAF-1 to generate synthetic membraneless organelles with controllable phase separation and cargo recruitment. First, we demonstrate enzymatically triggered droplet assembly and disassembly, whereby miscibility and RGG domain valency are tuned by protease activity. Second, we control droplet composition by selectively recruiting cargo molecules via protein interaction motifs. We then demonstrate protease-triggered controlled release of cargo. Droplet assembly and cargo recruitment are robust, occurring in cytoplasmic extracts and in living mammalian cells. This versatile system, which generates dynamic membraneless organelles with programmable phase behavior and composition, has important applications for compartmentalizing collections of proteins in engineered cells and protocells.

Suggested Citation

  • Benjamin S. Schuster & Ellen H. Reed & Ranganath Parthasarathy & Craig N. Jahnke & Reese M. Caldwell & Jessica G. Bermudez & Holly Ramage & Matthew C. Good & Daniel A. Hammer, 2018. "Controllable protein phase separation and modular recruitment to form responsive membraneless organelles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05403-1
    DOI: 10.1038/s41467-018-05403-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05403-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05403-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcos Gil-Garcia & Ana I. Benítez-Mateos & Marcell Papp & Florence Stoffel & Chiara Morelli & Karl Normak & Katarzyna Makasewicz & Lenka Faltova & Francesca Paradisi & Paolo Arosio, 2024. "Local environment in biomolecular condensates modulates enzymatic activity across length scales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Vivian Yeong & Jou-wen Wang & Justin M. Horn & Allie C. Obermeyer, 2022. "Intracellular phase separation of globular proteins facilitated by short cationic peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Ellen H. Brumbaugh-Reed & Yang Gao & Kazuhiro Aoki & Jared E. Toettcher, 2024. "Rapid and reversible dissolution of biomolecular condensates using light-controlled recruitment of a solubility tag," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yuri Hong & Saeed Najafi & Thomas Casey & Joan-Emma Shea & Song-I Han & Dong Soo Hwang, 2022. "Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Yohan Lee & Sujin Park & Feng Yuan & Carl C. Hayden & Liping Wang & Eileen M. Lafer & Siyoung Q. Choi & Jeanne C. Stachowiak, 2023. "Transmembrane coupling of liquid-like protein condensates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Takayuki Miki & Masahiro Hashimoto & Hiroki Takahashi & Masatoshi Shimizu & Sae Nakayama & Tadaomi Furuta & Hisakazu Mihara, 2024. "De novo designed YK peptides forming reversible amyloid for synthetic protein condensates in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Fernando Muzzopappa & Johan Hummert & Michela Anfossi & Stanimir Asenov Tashev & Dirk-Peter Herten & Fabian Erdel, 2022. "Detecting and quantifying liquid–liquid phase separation in living cells by model-free calibrated half-bleaching," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Tomoya Maruyama & Jing Gong & Masahiro Takinoue, 2024. "Temporally controlled multistep division of DNA droplets for dynamic artificial cells," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Hao-Yu Chuang & Ruei-Yu He & Yung-An Huang & Wan-Ting Hsu & Ya-Jen Cheng & Zheng-Rong Guo & Niaz Wali & Ing-Shouh Hwang & Jiun-Jie Shie & Joseph Jen-Tse Huang, 2024. "Engineered droplet-forming peptide as photocontrollable phase modulator for fused in sarcoma protein," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Wenwen Yu & Ke Jin & Dandan Wang & Nankai Wang & Yangyang Li & Yanfeng Liu & Jianghua Li & Guocheng Du & Xueqin Lv & Jian Chen & Rodrigo Ledesma-Amaro & Long Liu, 2024. "De novo engineering of programmable and multi-functional biomolecular condensates for controlled biosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Jaimie Marie Stewart & Shiyi Li & Anli A. Tang & Melissa Ann Klocke & Martin Vincent Gobry & Giacomo Fabrini & Lorenzo Michele & Paul W. K. Rothemund & Elisa Franco, 2024. "Modular RNA motifs for orthogonal phase separated compartments," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Manjia Li & Byung Min Park & Xin Dai & Yingjie Xu & Jinqing Huang & Fei Sun, 2022. "Controlling synthetic membraneless organelles by a red-light-dependent singlet oxygen-generating protein," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05403-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.