IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49708-w.html
   My bibliography  Save this article

Chiral multiferroicity in two-dimensional hybrid organic-inorganic perovskites

Author

Listed:
  • Haining Zheng

    (International Campus of Tianjin University
    National University of Singapore)

  • Arup Ghosh

    (National University of Singapore)

  • M. J. Swamynadhan

    (SRM Institute of Science and Technology)

  • Qihan Zhang

    (National University of Singapore)

  • Walter P. D. Wong

    (National University of Singapore)

  • Zhenyue Wu

    (National University of Singapore)

  • Rongrong Zhang

    (National University of Singapore)

  • Jingsheng Chen

    (National University of Singapore)

  • Fanica Cimpoesu

    (Institute of Physical Chemistry)

  • Saurabh Ghosh

    (SRM Institute of Science and Technology)

  • Branton J. Campbell

    (Brigham Young University)

  • Kai Wang

    (Beijing Jiaotong University)

  • Alessandro Stroppa

    (c/o Dip.to di Scienze Fisiche e Chimiche - University of L’Aquila)

  • Ramanathan Mahendiran

    (National University of Singapore)

  • Kian Ping Loh

    (International Campus of Tianjin University
    National University of Singapore)

Abstract

Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-β-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, $$\xi={{{{{\bf{p}}}}}}{{\cdot }}{{{{{\bf{r}}}}}}$$ ξ = p ⋅ r ( $${{{{{\bf{p}}}}}}$$ p represents the ferroelectric displacement vector and $${{{{{\bf{r}}}}}}$$ r denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor’s sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.

Suggested Citation

  • Haining Zheng & Arup Ghosh & M. J. Swamynadhan & Qihan Zhang & Walter P. D. Wong & Zhenyue Wu & Rongrong Zhang & Jingsheng Chen & Fanica Cimpoesu & Saurabh Ghosh & Branton J. Campbell & Kai Wang & Ale, 2024. "Chiral multiferroicity in two-dimensional hybrid organic-inorganic perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49708-w
    DOI: 10.1038/s41467-024-49708-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49708-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49708-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manoj K. Jana & Ruyi Song & Haoliang Liu & Dipak Raj Khanal & Svenja M. Janke & Rundong Zhao & Chi Liu & Z. Valy Vardeny & Volker Blum & David B. Mitzi, 2020. "Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Zhenyue Wu & Shunning Li & Yasmin Mohamed Yousry & Walter P. D. Wong & Xinyun Wang & Teng Ma & Zhefeng Chen & Yan Shao & Weng Heng Liew & Kui Yao & Feng Pan & Kian Ping Loh, 2022. "Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Rui Cai & Indrajit Wadgaonkar & Jia Wei Melvin Lim & Stefano Dal Forno & David Giovanni & Minjun Feng & Senyun Ye & Marco Battiato & Tze Chien Sum, 2023. "Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. G. L. J. A. Rikken & E. Raupach, 1997. "Observation of magneto-chiral dichroism," Nature, Nature, vol. 390(6659), pages 493-494, December.
    5. Evan Lafalce & Eric Amerling & Zhi-Gang Yu & Peter C. Sercel & Luisa Whittaker-Brooks & Z. Valy Vardeny, 2022. "Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Andrew H. Comstock & Chung-Tao Chou & Zhiyu Wang & Tonghui Wang & Ruyi Song & Joseph Sklenar & Aram Amassian & Wei Zhang & Haipeng Lu & Luqiao Liu & Matthew C. Beard & Dali Sun, 2023. "Hybrid magnonics in hybrid perovskite antiferromagnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Li & Zhitao Zhang & Chen Liu & Dongxing Zheng & Bin Fang & Chenhui Zhang & Aitian Chen & Yinchang Ma & Chunmei Wang & Haoliang Liu & Ka Shen & Aurélien Manchon & John Q. Xiao & Ziqiang Qiu & Can-M, 2024. "Reconfigurable spin current transmission and magnon–magnon coupling in hybrid ferrimagnetic insulators," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Hugo I Cruz-Rosas & Francisco Riquelme & Patricia Santiago & Luis Rendón & Thomas Buhse & Fernando Ortega-Gutiérrez & Raúl Borja-Urby & Doroteo Mendoza & Carlos Gaona & Pedro Miramontes & Germinal Coc, 2019. "Multiwall and bamboo-like carbon nanotubes from the Allende chondrite: A probable source of asymmetry," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
    3. Shunran Li & Xian Xu & Conrad A. Kocoj & Chenyu Zhou & Yanyan Li & Du Chen & Joseph A. Bennett & Sunhao Liu & Lina Quan & Suchismita Sarker & Mingzhao Liu & Diana Y. Qiu & Peijun Guo, 2024. "Large exchange-driven intrinsic circular dichroism of a chiral 2D hybrid perovskite," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Chuanzhao Li & Mykola Telychko & Yue Zheng & Shurong Yuan & Zhenyue Wu & Walter P. D. Wong & Yixin Li & Yuanyuan Jin & Weng Fu Io & Xinyun Wang & Junhao Lin & Jianhua Hao & Cheng Han & Kai Leng, 2024. "Switchable planar chirality and spin texture in highly ordered ferroelectric hybrid perovskite domains," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Junqing Xu & Kejun Li & Uyen N. Huynh & Mayada Fadel & Jinsong Huang & Ravishankar Sundararaman & Valy Vardeny & Yuan Ping, 2024. "How spin relaxes and dephases in bulk halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Jaehyun Son & Sunihl Ma & Young-Kwang Jung & Jeiwan Tan & Gyumin Jang & Hyungsoo Lee & Chan Uk Lee & Junwoo Lee & Subin Moon & Wooyong Jeong & Aron Walsh & Jooho Moon, 2023. "Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Paolo Sessi & Feng-Ren Fan & Felix Küster & Kaustuv Manna & Niels B. M. Schröter & Jing-Rong Ji & Samuel Stolz & Jonas A. Krieger & Ding Pei & Timur K. Kim & Pavel Dudin & Cephise Cacho & Roland Wid, 2020. "Handedness-dependent quasiparticle interference in the two enantiomers of the topological chiral semimetal PdGa," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    8. Shreetu Shrestha & Mingxing Li & Suji Park & Xiao Tong & Donald DiMarzio & Mircea Cotlet, 2023. "Room temperature valley polarization via spin selective charge transfer," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Weng Fu Io & Sin -Yi Pang & Lok Wing Wong & Yuqian Zhao & Ran Ding & Jianfeng Mao & Yifei Zhao & Feng Guo & Shuoguo Yuan & Jiong Zhao & Jiabao Yi & Jianhua Hao, 2023. "Direct observation of intrinsic room-temperature ferroelectricity in 2D layered CuCrP2S6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Shadi Safaei Jazi & Ihar Faniayeu & Rafael Cichelero & Dimitrios C. Tzarouchis & Mohammad Mahdi Asgari & Alexandre Dmitriev & Shanhui Fan & Viktar Asadchy, 2024. "Optical Tellegen metamaterial with spontaneous magnetization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Sasa Wang & Asif Abdullah Khan & Sam Teale & Jian Xu & Darshan H. Parmar & Ruyan Zhao & Luke Grater & Peter Serles & Yu Zou & Tobin Filleter & Dwight S. Seferos & Dayan Ban & Edward H. Sargent, 2023. "Large piezoelectric response in a Jahn-Teller distorted molecular metal halide," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    14. Geert L. J. A. Rikken & Narcis Avarvari, 2022. "Dielectric magnetochiral anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-5, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49708-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.