IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49641-y.html
   My bibliography  Save this article

MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters

Author

Listed:
  • Morten Kam Dahl Dueholm

    (Aalborg University)

  • Kasper Skytte Andersen

    (Aalborg University)

  • Anne-Kirstine C. Korntved

    (Aalborg University)

  • Vibeke Rudkjøbing

    (Aalborg University)

  • Madalena Alves

    (University of Minho)

  • Yadira Bajón-Fernández

    (Cranfield University)

  • Damien Batstone

    (The University of Queensland)

  • Caitlyn Butler

    (University of Massachusetts Amherst)

  • Mercedes Cecilia Cruz

    (Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET))

  • Åsa Davidsson

    (Lund University)

  • Leonardo Erijman

    (University of Buenos Aires)

  • Christof Holliger

    (Ecole Polytechnique Fédérale de Lausanne (EPFL))

  • Konrad Koch

    (Technical University of Munich (TUM))

  • Norbert Kreuzinger

    (TU Wien)

  • Changsoo Lee

    (Ulsan National Institute of Science and Technology (UNIST))

  • Gerasimos Lyberatos

    (National Technical University of Athens)

  • Srikanth Mutnuri

    (Birla Institute of Technology and Science (BITS-Pilani))

  • Vincent O’Flaherty

    (University of Galway)

  • Piotr Oleskowicz-Popiel

    (Poznan University of Technology)

  • Dana Pokorna

    (University of Chemistry and Technology Prague)

  • Veronica Rajal

    (Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET))

  • Michael Recktenwald

    (Espoo R&D Center)

  • Jorge Rodríguez

    (Khalifa University)

  • Pascal E. Saikaly

    (King Abdullah University of Science and Technology (KAUST))

  • Nick Tooker

    (University of Massachusetts Amherst)

  • Julia Vierheilig

    (TU Wien)

  • Jo Vrieze

    (Ghent University)

  • Christian Wurzbacher

    (Technical University of Munich (TUM))

  • Per Halkjær Nielsen

    (Aalborg University)

Abstract

Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84–99% and 18–61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.

Suggested Citation

  • Morten Kam Dahl Dueholm & Kasper Skytte Andersen & Anne-Kirstine C. Korntved & Vibeke Rudkjøbing & Madalena Alves & Yadira Bajón-Fernández & Damien Batstone & Caitlyn Butler & Mercedes Cecilia Cruz & , 2024. "MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49641-y
    DOI: 10.1038/s41467-024-49641-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49641-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49641-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jethro S. Johnson & Daniel J. Spakowicz & Bo-Young Hong & Lauren M. Petersen & Patrick Demkowicz & Lei Chen & Shana R. Leopold & Blake M. Hanson & Hanako O. Agresta & Mark Gerstein & Erica Sodergren &, 2019. "Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    2. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    3. Tiwary, A. & Williams, I.D. & Pant, D.C. & Kishore, V.V.N., 2015. "Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 883-901.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakub Mazurkiewicz, 2023. "The Impact of Manure Use for Energy Purposes on the Economic Balance of a Dairy Farm," Energies, MDPI, vol. 16(18), pages 1-22, September.
    2. Lucas Moitinho-Silva & Frauke Degenhardt & Elke Rodriguez & Hila Emmert & Simonas Juzenas & Lena Möbus & Florian Uellendahl-Werth & Nicole Sander & Hansjörg Baurecht & Lukas Tittmann & Wolfgang Lieb &, 2022. "Host genetic factors related to innate immunity, environmental sensing and cellular functions are associated with human skin microbiota," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Begum, Sameena & Ahuja, Shruti & Anupoju, Gangagni Rao & Kuruti, Kranti & Juntupally, Sudharshan & Gandu, Bharath & Ahuja, D.K., 2017. "Process intensification with inline pre and post processing mechanism for valorization of poultry litter through high rate biomethanation technology: A full scale experience," Renewable Energy, Elsevier, vol. 114(PB), pages 428-436.
    4. Grażyna Kędzia & Barbara Ocicka & Aneta Pluta-Zaremba & Marta Raźniewska & Jolanta Turek & Beata Wieteska-Rosiak, 2022. "Social Innovations for Improving Compostable Packaging Waste Management in CE: A Multi-Solution Perspective," Energies, MDPI, vol. 15(23), pages 1-19, December.
    5. Ugo De Corato, 2020. "RETRACTED: Soil Microbiome Manipulation Gives New Insights in Plant Disease-Suppressive Soils from the Perspective of a Circular Economy: A Critical Review," Sustainability, MDPI, vol. 13(1), pages 1-41, December.
    6. Sławomir Obidziński & Magdalena Joka Yildiz & Sebastian Dąbrowski & Jan Jasiński & Wojciech Czekała, 2022. "Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis," Energies, MDPI, vol. 15(24), pages 1-19, December.
    7. Prakash Kumar Sarangi & Rajesh Kumar Srivastava & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus & Roman Sass, 2023. "Municipal-Based Biowaste Conversion for Developing and Promoting Renewable Energy in Smart Cities," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    8. Simon A. Fromm & Kate M. O’Connor & Michael Purdy & Pramod R. Bhatt & Gary Loughran & John F. Atkins & Ahmad Jomaa & Simone Mattei, 2023. "The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Dieu Linh Hoang & Chris Davis & Henri C. Moll & Sanderine Nonhebel, 2020. "Impacts of biogas production on nitrogen flows on Dutch dairy system: Multiple level assessment of nitrogen indicators within the biogas production chain," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 665-680, June.
    10. Barbara Bigliardi & Serena Filippelli, 2021. "Investigating Circular Business Model Innovation through Keywords Analysis," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    11. Huilin Li & Hongzhe Li, 2021. "Introduction to Special Issue on Statistics in Microbiome and Metagenomics," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 197-199, July.
    12. Florin Nenciu & Iustina Stanciulescu & Horia Vlad & Andrei Gabur & Ovidiu Leonard Turcu & Tiberiu Apostol & Valentin Nicolae Vladut & Diana Mariana Cocarta & Constantin Stan, 2022. "Decentralized Processing Performance of Fruit and Vegetable Waste Discarded from Retail, Using an Automated Thermophilic Composting Technology," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    13. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    14. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    15. Morten Kam Dahl Dueholm & Marta Nierychlo & Kasper Skytte Andersen & Vibeke Rudkjøbing & Simon Knutsson & Mads Albertsen & Per Halkjær Nielsen, 2022. "MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Gunes, Burcu & Stokes, Joseph & Davis, Paul & Connolly, Cathal & Lawler, Jenny, 2019. "Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    17. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Biohydrogen production from solar and wind assisted AF-MEC coupled with MFC, PEM electrolysis of H2O and H2 fuel cell for small-scale applications," Renewable Energy, Elsevier, vol. 224(C).
    18. Grzegorz Łysiak & Ryszard Kulig & Jawad Kadhim Al Aridhee, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 1—Study on the Effect of Moisture Content on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(5), pages 1-19, March.
    19. Alejandro Moure Abelenda & Abdikhani Ali & Kirk T. Semple & Farid Aiouache, 2023. "Aspen Plus ® Process Simulation Model of the Biomass Ash-Based Treatment of Anaerobic Digestate for Production of Fertilizer and Upgradation of Biogas," Energies, MDPI, vol. 16(7), pages 1-22, March.
    20. Kim, Hoo Hugo & Basak, Bikram & Lee, Dong-Yeol & Chung, Woo Jin & Chang, Soon Woong & Kwak, Min-Jin & Kim, Seung Hyun & Hwang, Jae Kyoon & Keum, Jihyun & Park, Hyun-Kyung & Ha, Geon-Soo & Kim, Kwang H, 2023. "Insights into prokaryotic metataxonomics and predictive metabolic function in field-scale anaerobic digesters treating various organic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49641-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.