IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49596-0.html
   My bibliography  Save this article

Adult microglial TGFβ1 is required for microglia homeostasis via an autocrine mechanism to maintain cognitive function in mice

Author

Listed:
  • Alicia Bedolla

    (University of Cincinnati
    University of Cincinnati)

  • Elliot Wegman

    (University of Cincinnati)

  • Max Weed

    (University of Cincinnati)

  • Messiyah K. Stevens

    (Vanderbilt University)

  • Kierra Ware

    (University of Cincinnati)

  • Aditi Paranjpe

    (Cincinnati Children’s Hospital Medical Center)

  • Anastasia Alkhimovitch

    (University of Cincinnati
    Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine)

  • Igal Ifergan

    (University of Cincinnati
    University of Cincinnati
    Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine)

  • Aleksandr Taranov

    (University of Cincinnati
    University of Cincinnati)

  • Joshua D. Peter

    (University of Cincinnati)

  • Rosa Maria Salazar Gonzalez

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine)

  • J. Elliott Robinson

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine)

  • Lucas McClain

    (University of Cincinnati)

  • Krishna M. Roskin

    (Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine
    University of Cincinnati College of Medicine
    Cincinnati Children’s Hospital Medical Center)

  • Nigel H. Greig

    (National Institutes of Health)

  • Yu Luo

    (University of Cincinnati
    University of Cincinnati
    Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine)

Abstract

While TGF-β signaling is essential for microglial function, the cellular source of TGF-β1 ligand and its spatial regulation remains unclear in the adult CNS. Our data supports that microglia but not astrocytes or neurons are the primary producers of TGF-β1 ligands needed for microglial homeostasis. Microglia-Tgfb1 KO leads to the activation of microglia featuring a dyshomeostatic transcriptome that resembles disease-associated, injury-associated, and aged microglia, suggesting microglial self-produced TGF-β1 ligands are important in the adult CNS. Astrocytes in MG-Tgfb1 inducible (i)KO mice show a transcriptome profile that is closely aligned with an LPS-associated astrocyte profile. Additionally, using sparse mosaic single-cell microglia KO of TGF-β1 ligand we established an autocrine mechanism for signaling. Here we show that MG-Tgfb1 iKO mice present cognitive deficits, supporting that precise spatial regulation of TGF-β1 ligand derived from microglia is required for the maintenance of brain homeostasis and normal cognitive function in the adult brain.

Suggested Citation

  • Alicia Bedolla & Elliot Wegman & Max Weed & Messiyah K. Stevens & Kierra Ware & Aditi Paranjpe & Anastasia Alkhimovitch & Igal Ifergan & Aleksandr Taranov & Joshua D. Peter & Rosa Maria Salazar Gonzal, 2024. "Adult microglial TGFβ1 is required for microglia homeostasis via an autocrine mechanism to maintain cognitive function in mice," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49596-0
    DOI: 10.1038/s41467-024-49596-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49596-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49596-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    2. Andrew C. Yang & Ryan T. Vest & Fabian Kern & Davis P. Lee & Maayan Agam & Christina A. Maat & Patricia M. Losada & Michelle B. Chen & Nicholas Schaum & Nathalie Khoury & Angus Toland & Kruti Calcutta, 2022. "A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk," Nature, Nature, vol. 603(7903), pages 885-892, March.
    3. Elizabeth Spangenberg & Paul L. Severson & Lindsay A. Hohsfield & Joshua Crapser & Jiazhong Zhang & Elizabeth A. Burton & Ying Zhang & Wayne Spevak & Jack Lin & Nicole Y. Phan & Gaston Habets & Andrey, 2019. "Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model," Nature Communications, Nature, vol. 10(1), pages 1-21, December.
    4. Shane A. Liddelow & Kevin A. Guttenplan & Laura E. Clarke & Frederick C. Bennett & Christopher J. Bohlen & Lucas Schirmer & Mariko L. Bennett & Alexandra E. Münch & Won-Suk Chung & Todd C. Peterson & , 2017. "Neurotoxic reactive astrocytes are induced by activated microglia," Nature, Nature, vol. 541(7638), pages 481-487, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyun-Sik Yang & Ling Teng & Daniel Kang & Vilas Menon & Tian Ge & Hilary K. Finucane & Aaron P. Schultz & Michael Properzi & Hans-Ulrich Klein & Lori B. Chibnik & Julie A. Schneider & David A. Bennett, 2023. "Cell-type-specific Alzheimer’s disease polygenic risk scores are associated with distinct disease processes in Alzheimer’s disease," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Noah R. Johnson & Peng Yuan & Erika Castillo & T. Peter Lopez & Weizhou Yue & Annalise Bond & Brianna M. Rivera & Miranda C. Sullivan & Masakazu Hirouchi & Kurt Giles & Atsushi Aoyagi & Carlo Condello, 2023. "CSF1R inhibitors induce a sex-specific resilient microglial phenotype and functional rescue in a tauopathy mouse model," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    3. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yuzhou Chang & Jixin Liu & Yi Jiang & Anjun Ma & Yao Yu Yeo & Qi Guo & Megan McNutt & Jordan E. Krull & Scott J. Rodig & Dan H. Barouch & Garry P. Nolan & Dong Xu & Sizun Jiang & Zihai Li & Bingqiang , 2024. "Graph Fourier transform for spatial omics representation and analyses of complex organs," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Faith H. Brennan & Yang Li & Cankun Wang & Anjun Ma & Qi Guo & Yi Li & Nicole Pukos & Warren A. Campbell & Kristina G. Witcher & Zhen Guan & Kristina A. Kigerl & Jodie C. E. Hall & Jonathan P. Godbout, 2022. "Microglia coordinate cellular interactions during spinal cord repair in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    7. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Amina Zahaf & Abdelmoumen Kassoussi & Tom Hutteau-Hamel & Amine Mellouk & Corentine Marie & Lida Zoupi & Foteini Tsouki & Claudia Mattern & Pierre Bobé & Michael Schumacher & Anna Williams & Carlos Pa, 2023. "Androgens show sex-dependent differences in myelination in immune and non-immune murine models of CNS demyelination," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Xinhong Chen & Damien A. Wolfe & Dhanesh Sivadasan Bindu & Mengying Zhang & Naz Taskin & David Goertsen & Timothy F. Shay & Erin E. Sullivan & Sheng-Fu Huang & Sripriya Ravindra Kumar & Cynthia M. Aro, 2023. "Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Floriane Bretheau & Adrian Castellanos-Molina & Dominic Bélanger & Maxime Kusik & Benoit Mailhot & Ana Boisvert & Nicolas Vallières & Martine Lessard & Matthias Gunzer & Xiaoyu Liu & Éric Boilard & Ni, 2022. "The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    13. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Koun Onodera & Hiroyuki K. Kato, 2022. "Translaminar recurrence from layer 5 suppresses superficial cortical layers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. April R. Kriebel & Joshua D. Welch, 2022. "UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Luis Flores Horgue & Alexis Assens & Leon Fodoulian & Leonardo Marconi & Joël Tuberosa & Alexander Haider & Madlaina Boillat & Alan Carleton & Ivan Rodriguez, 2022. "Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Giuseppe Chindemi & Marwan Abdellah & Oren Amsalem & Ruth Benavides-Piccione & Vincent Delattre & Michael Doron & András Ecker & Aurélien T. Jaquier & James King & Pramod Kumbhar & Caitlin Monney & Ro, 2022. "A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Yannick Fotio & Alex Mabou Tagne & Erica Squire & Hye-lim Lee & Connor M. Phillips & Kayla Chang & Faizy Ahmed & Andrew S. Greenberg & S. Armando Villalta & Vanessa M. Scarfone & Gilberto Spadoni & Ma, 2024. "NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Qilin Guo & Davide Gobbo & Na Zhao & Hong Zhang & Nana-Oye Awuku & Qing Liu & Li-Pao Fang & Tanja M. Gampfer & Markus R. Meyer & Renping Zhao & Xianshu Bai & Shan Bian & Anja Scheller & Frank Kirchhof, 2024. "Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    20. Cathy Pichol-Thievend & Oceane Anezo & Aafrin M. Pettiwala & Guillaume Bourmeau & Remi Montagne & Anne-Marie Lyne & Pierre-Olivier Guichet & Pauline Deshors & Alberto Ballestín & Benjamin Blanchard & , 2024. "VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance," Nature Communications, Nature, vol. 15(1), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49596-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.