IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49469-6.html
   My bibliography  Save this article

Consecutive multimaterial printing of biomimetic ionic hydrogel power sources with high flexibility and stretchability

Author

Listed:
  • Pei He

    (Xi’an Jiaotong University
    Xi’an Jiaotong University)

  • Junyu Yue

    (Xi’an Jiaotong University
    Xi’an Jiaotong University)

  • Zhennan Qiu

    (Xi’an Jiaotong University
    Xi’an Jiaotong University)

  • Zijie Meng

    (Xi’an Jiaotong University
    Xi’an Jiaotong University
    Xi’an Jiaotong University)

  • Jiankang He

    (Xi’an Jiaotong University
    Xi’an Jiaotong University)

  • Dichen Li

    (Xi’an Jiaotong University
    Xi’an Jiaotong University)

Abstract

Electric eel is an excellent example to harness ion-concentration gradients for sustainable power generation. However, current strategies to create electric-eel-inspired power sources commonly involve manual stacking of multiple salinity-gradient power source units, resulting in low efficiency, unstable contact, and poor flexibility. Here we propose a consecutive multimaterial printing strategy to efficiently fabricate biomimetic ionic hydrogel power sources with a maximum stretchability of 137%. The consecutively-printed ionic hydrogel power source filaments showed seamless bonding interface and can maintain stable voltage outputs for 1000 stretching cycles at 100% strain. With arrayed multi-channel printhead, power sources with a maximum voltage of 208 V can be automatically printed and assembled in parallel within 30 min. The as-printed flexible power source filaments can be woven into a wristband to power a digital wristwatch. The presented strategy provides a tool to efficiently produce electric-eel-inspired ionic hydrogel power sources with great stretchability for various flexible power source applications.

Suggested Citation

  • Pei He & Junyu Yue & Zhennan Qiu & Zijie Meng & Jiankang He & Dichen Li, 2024. "Consecutive multimaterial printing of biomimetic ionic hydrogel power sources with high flexibility and stretchability," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49469-6
    DOI: 10.1038/s41467-024-49469-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49469-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49469-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Skylar-Scott & Jochen Mueller & Claas W. Visser & Jennifer A. Lewis, 2019. "Voxelated soft matter via multimaterial multinozzle 3D printing," Nature, Nature, vol. 575(7782), pages 330-335, November.
    2. Jiqing He & Chenhao Lu & Haibo Jiang & Fei Han & Xiang Shi & Jingxia Wu & Liyuan Wang & Taiqiang Chen & Jiajia Wang & Ye Zhang & Han Yang & Guoqi Zhang & Xuemei Sun & Bingjie Wang & Peining Chen & Yon, 2021. "Scalable production of high-performing woven lithium-ion fibre batteries," Nature, Nature, vol. 597(7874), pages 57-63, September.
    3. Di Wei & Feiyao Yang & Zhuoheng Jiang & Zhonglin Wang, 2022. "Flexible iontronics based on 2D nanofluidic material," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Yujia Zhang & Jorin Riexinger & Xingyun Yang & Ellina Mikhailova & Yongcheng Jin & Linna Zhou & Hagan Bayley, 2023. "A microscale soft ionic power source modulates neuronal network activity," Nature, Nature, vol. 620(7976), pages 1001-1006, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle C. H. Chin & Grant Ovsepyan & Andrew J. Boydston, 2024. "Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Shuyi Sun & Shuailong Li & Weixiao Feng & Jiaqiu Luo & Thomas P. Russell & Shaowei Shi, 2024. "Reconfigurable droplet networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Zewen Lin & Xiaowen Qiu & Zhouqishuo Cai & Jialiang Li & Yanan Zhao & Xinping Lin & Jinmeng Zhang & Xiaolan Hu & Hua Bai, 2024. "High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Liu, Jin-Hua & Wang, Peng & Gao, Zhihan & Li, Xuehao & Cui, Wenbo & Li, Ru & Ramakrishna, Seeram & Zhang, Jun & Long, Yun-Ze, 2024. "Review on electrospinning anode and separators for lithium ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Sang-Joon Ahn & Howon Lee & Kyu-Jin Cho, 2024. "3D printing with a 3D printed digital material filament for programming functional gradients," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Yi Xing & Mingjie Zhou & Yueguang Si & Chi-Yuan Yang & Liang-Wen Feng & Qilin Wu & Fei Wang & Xiaomin Wang & Wei Huang & Yuhua Cheng & Ruilin Zhang & Xiaozheng Duan & Jun Liu & Ping Song & Hengda Sun , 2023. "Integrated opposite charge grafting induced ionic-junction fiber," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Bin Wang & Einstom Engay & Peter R. Stubbe & Saeed Z. Moghaddam & Esben Thormann & Kristoffer Almdal & Aminul Islam & Yi Yang, 2022. "Stiffness control in dual color tomographic volumetric 3D printing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Mohsen Habibi & Shervin Foroughi & Vahid Karamzadeh & Muthukumaran Packirisamy, 2022. "Direct sound printing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Myoung Hwan Kim & Yogendra Pratap Singh & Nazmiye Celik & Miji Yeo & Elias Rizk & Daniel J. Hayes & Ibrahim T. Ozbolat, 2024. "High-throughput bioprinting of spheroids for scalable tissue fabrication," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    16. Yue Zhang & Kangkang Liu & Tao Liu & Chujun Ni & Di Chen & Jiamei Guo & Chang Liu & Jian Zhou & Zheng Jia & Qian Zhao & Pengju Pan & Tao Xie, 2021. "Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Mahdi Derayatifar & Mohsen Habibi & Rama Bhat & Muthukumaran Packirisamy, 2024. "Holographic direct sound printing," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Yue Liu & Na Peng & Yifeng Yao & Xuan Zhang & Xianqi Peng & Liyan Zhao & Jing Wang & Liang Peng & Zuankai Wang & Kenji Mochizuki & Min Yue & Shikuan Yang, 2022. "Breaking the nanoparticle’s dispersible limit via rotatable surface ligands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Huawei Qu & Chongjian Gao & Kaizheng Liu & Hongya Fu & Zhiyuan Liu & Paul H. J. Kouwer & Zhenyu Han & Changshun Ruan, 2024. "Gradient matters via filament diameter-adjustable 3D printing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49469-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.