IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v620y2023i7976d10.1038_s41586-023-06295-y.html
   My bibliography  Save this article

A microscale soft ionic power source modulates neuronal network activity

Author

Listed:
  • Yujia Zhang

    (University of Oxford)

  • Jorin Riexinger

    (University of Oxford)

  • Xingyun Yang

    (University of Oxford)

  • Ellina Mikhailova

    (University of Oxford)

  • Yongcheng Jin

    (University of Oxford)

  • Linna Zhou

    (University of Oxford
    University of Oxford)

  • Hagan Bayley

    (University of Oxford)

Abstract

Bio-integrated devices need power sources to operate1,2. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction3, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices4–6. One approach is to use soft power sources inspired by the electrical eel7,8; however, power sources that combine the required capabilities have not yet been produced, because it is challenging to obtain miniaturized units that both conserve contained energy before usage and are easily triggered to produce an energy output. Here we develop a miniaturized soft power source by depositing lipid-supported networks of nanolitre hydrogel droplets that use internal ion gradients to generate energy. Compared to the original eel-inspired design7, our approach can shrink the volume of a power unit by more than 105-fold and it can store energy for longer than 24 h, enabling operation on-demand with a 680-fold greater power density of about 1,300 W m−3. Our droplet device can serve as a biocompatible and biological ionic current source to modulate neuronal network activity in three-dimensional neural microtissues and in ex vivo mouse brain slices. Ultimately, our soft microscale ionotronic device might be integrated into living organisms.

Suggested Citation

  • Yujia Zhang & Jorin Riexinger & Xingyun Yang & Ellina Mikhailova & Yongcheng Jin & Linna Zhou & Hagan Bayley, 2023. "A microscale soft ionic power source modulates neuronal network activity," Nature, Nature, vol. 620(7976), pages 1001-1006, August.
  • Handle: RePEc:nat:nature:v:620:y:2023:i:7976:d:10.1038_s41586-023-06295-y
    DOI: 10.1038/s41586-023-06295-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06295-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06295-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuyi Sun & Shuailong Li & Weixiao Feng & Jiaqiu Luo & Thomas P. Russell & Shaowei Shi, 2024. "Reconfigurable droplet networks," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Pei He & Junyu Yue & Zhennan Qiu & Zijie Meng & Jiankang He & Dichen Li, 2024. "Consecutive multimaterial printing of biomimetic ionic hydrogel power sources with high flexibility and stretchability," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:620:y:2023:i:7976:d:10.1038_s41586-023-06295-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.