IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49454-z.html
   My bibliography  Save this article

3D architecture and complex behavior along the simple central San Andreas fault

Author

Listed:
  • Yifang Cheng

    (Tongji University
    University of California
    University of California, Berkeley
    Tongji University)

  • Roland Bürgmann

    (University of California
    University of California, Berkeley)

  • Richard M. Allen

    (University of California
    University of California, Berkeley)

Abstract

The central San Andreas Fault (CSAF) exhibits a simple linear large-scale fault geometry, yet seismic and aseismic deformation features vary in a complex way along the fault. Here we investigate fault zone behaviors using geodetic observation, seismicity and microearthquake focal mechanisms. We employ an improved focal-mechanism characterization method using relative earthquake radiation patterns on 75,164 Ml ≥ 1 earthquakes along a 2-km-wide, 190-km-long segment of the CSAF, from 1984 to 2015. The data reveal the 3D fine-scale structure and interseismic kinematics of the CSAF. Our findings indicate that the first-order spatial variations in interseismic fault creep rate, creep direction, and the fault zone stress field can be explained by a simple fault coupling model. The inferred 3D mechanical properties of a mechanically weak and poorly coupled fault zone provide a unified understanding of the complex fine-scale kinematics, indicating distributed slip deficits facilitating small-to-moderate earthquakes, localized stress heterogeneities, and complex multi-scale ruptures along the fault. Through this detailed mapping, we aim to relate the fine-scale fault architecture to potential future faulting behavior along the CSAF.

Suggested Citation

  • Yifang Cheng & Roland Bürgmann & Richard M. Allen, 2024. "3D architecture and complex behavior along the simple central San Andreas fault," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49454-z
    DOI: 10.1038/s41467-024-49454-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49454-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49454-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. H. Scholz, 2000. "A fault in the ‘weak San Andreas’ theory," Nature, Nature, vol. 406(6793), pages 234-234, July.
    2. David A. Lockner & Carolyn Morrow & Diane Moore & Stephen Hickman, 2011. "Low strength of deep San Andreas fault gouge from SAFOD core," Nature, Nature, vol. 472(7341), pages 82-85, April.
    3. Hugo Perfettini & Jean-Philippe Avouac & Hernando Tavera & Andrew Kositsky & Jean-Mathieu Nocquet & Francis Bondoux & Mohamed Chlieh & Anthony Sladen & Laurence Audin & Daniel L. Farber & Pierre Soler, 2010. "Seismic and aseismic slip on the Central Peru megathrust," Nature, Nature, vol. 465(7294), pages 78-81, May.
    4. Hiroyuki Noda & Nadia Lapusta, 2013. "Stable creeping fault segments can become destructive as a result of dynamic weakening," Nature, Nature, vol. 493(7433), pages 518-521, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Yao & Shengli Ma & Giulio Di Toro, 2023. "Coseismic fault sealing and fluid pressurization during earthquakes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Huihui Weng & Jean-Paul Ampuero, 2022. "Integrated rupture mechanics for slow slip events and earthquakes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Kai Zhang & Yanru Wang & Yu Luo & Dineng Zhao & Mingwei Wang & Fanlin Yang & Ziyin Wu, 2023. "Complex tsunamigenic near-trench seafloor deformation during the 2011 Tohoku–Oki earthquake," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Thomas H. W. Goebel & Valerian Schuster & Grzegorz Kwiatek & Kiran Pandey & Georg Dresen, 2024. "A laboratory perspective on accelerating preparatory processes before earthquakes and implications for foreshock detectability," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Dawei Gao & Kelin Wang & Tania L. Insua & Matthew Sypus & Michael Riedel & Tianhaozhe Sun, 2018. "Defining megathrust tsunami source scenarios for northernmost Cascadia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 445-469, October.
    6. Bin Zhao & Roland Bürgmann & Dongzhen Wang & Jian Zhang & Jiansheng Yu & Qi Li, 2022. "Aseismic slip and recent ruptures of persistent asperities along the Alaska-Aleutian subduction zone," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Wei Feng & Lu Yao & Chiara Cornelio & Rodrigo Gomila & Shengli Ma & Chaoqun Yang & Luigi Germinario & Claudio Mazzoli & Giulio Di Toro, 2023. "Physical state of water controls friction of gabbro-built faults," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49454-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.