IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07707-8.html
   My bibliography  Save this article

Assessing the nature of the charge-transfer electronic states in organic solar cells

Author

Listed:
  • Xian-Kai Chen

    (School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology)

  • Veaceslav Coropceanu

    (School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology)

  • Jean-Luc Brédas

    (School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology)

Abstract

The charge-transfer electronic states appearing at the donor-acceptor interfaces in organic solar cells mediate exciton dissociation, charge generation, and charge recombination. To date, the characterization of their nature has been carried out on the basis of models that only involve the charge-transfer state and the ground state. Here, we demonstrate that it is essential to go beyond such a two-state model and to consider explicitly as well the electronic and vibrational couplings with the local absorbing state on the donor and/or acceptor. We have thus developed a three-state vibronic model that allows us: to provide a reliable description of the optical absorption features related to the charge-transfer states; to underline the erroneous interpretations stemming from the application of the semi-classical two-state model; and to rationalize how the hybridization between the local-excitation state and charge-transfer state can lead to lower non-radiative voltage losses and higher power conversion efficiencies.

Suggested Citation

  • Xian-Kai Chen & Veaceslav Coropceanu & Jean-Luc Brédas, 2018. "Assessing the nature of the charge-transfer electronic states in organic solar cells," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07707-8
    DOI: 10.1038/s41467-018-07707-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07707-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07707-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Jiang & Yixin Li & Feng Liu & Wenxuan Wang & Wenli Su & Wuyue Liu & Songjun Liu & Wenkai Zhang & Jianhui Hou & Shengjie Xu & Yuanping Yi & Xiaozhang Zhu, 2023. "Suppressing electron-phonon coupling in organic photovoltaics for high-efficiency power conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jing Wang & Xudong Jiang & Hongbo Wu & Guitao Feng & Hanyu Wu & Junyu Li & Yuanping Yi & Xunda Feng & Zaifei Ma & Weiwei Li & Koen Vandewal & Zheng Tang, 2021. "Increasing donor-acceptor spacing for reduced voltage loss in organic solar cells," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Hongbo Wu & Hao Lu & Yungui Li & Xin Zhou & Guanqing Zhou & Hailin Pan & Hanyu Wu & Xunda Feng & Feng Liu & Koen Vandewal & Wolfgang Tress & Zaifei Ma & Zhishan Bo & Zheng Tang, 2024. "Decreasing exciton dissociation rates for reduced voltage losses in organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Anna Jungbluth & Eunkyung Cho & Alberto Privitera & Kaila M. Yallum & Pascal Kaienburg & Andreas E. Lauritzen & Thomas Derrien & Sameer V. Kesava & Irfan Habib & Saied Md Pratik & Natalie Banerji & Je, 2024. "Limiting factors for charge generation in low-offset fullerene-based organic solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07707-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.