IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v592y2021i7852d10.1038_s41586-021-03316-6.html
   My bibliography  Save this article

Pattern-recognition receptors are required for NLR-mediated plant immunity

Author

Listed:
  • Minhang Yuan

    (Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zeyu Jiang

    (Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Guozhi Bi

    (Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Kinya Nomura

    (Michigan State University)

  • Menghui Liu

    (Henan University)

  • Yiping Wang

    (Institute of Plant Physiology and Ecology, Chinese Academy of Sciences)

  • Boying Cai

    (Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jian-Min Zhou

    (Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Sheng Yang He

    (Michigan State University
    Duke University
    Duke University)

  • Xiu-Fang Xin

    (Institute of Plant Physiology and Ecology, Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Institute of Plant Physiology and Ecology, Chinese Academy of Sciences)

Abstract

The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs)1–4. PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades5,6. Here we show that Arabidopsis PRR and PRR co-receptor mutants—fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants—are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI.

Suggested Citation

  • Minhang Yuan & Zeyu Jiang & Guozhi Bi & Kinya Nomura & Menghui Liu & Yiping Wang & Boying Cai & Jian-Min Zhou & Sheng Yang He & Xiu-Fang Xin, 2021. "Pattern-recognition receptors are required for NLR-mediated plant immunity," Nature, Nature, vol. 592(7852), pages 105-109, April.
  • Handle: RePEc:nat:nature:v:592:y:2021:i:7852:d:10.1038_s41586-021-03316-6
    DOI: 10.1038/s41586-021-03316-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-021-03316-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-021-03316-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mervin Chun-Yi Ang & Jolly Madathiparambil Saju & Thomas K. Porter & Sayyid Mohaideen & Sreelatha Sarangapani & Duc Thinh Khong & Song Wang & Jianqiao Cui & Suh In Loh & Gajendra Pratap Singh & Nam-Ha, 2024. "Decoding early stress signaling waves in living plants using nanosensor multiplexing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Shen Huang & Chunli Wang & Zixuan Ding & Yaqian Zhao & Jing Dai & Jia Li & Haining Huang & Tongkai Wang & Min Zhu & Mingfeng Feng & Yinghua Ji & Zhongkai Zhang & Xiaorong Tao, 2024. "A plant NLR receptor employs ABA central regulator PP2C-SnRK2 to activate antiviral immunity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Md Mijanur Rahman Rajib & Kuikui Li & Md Saikat Hossain Bhuiyan & Wenxia Wang & Jin Gao & Heng Yin, 2024. "Konjac Glucomannan Oligosaccharides (KGMOS) Confers Innate Immunity against Phytophthora nicotianae in Tobacco," Agriculture, MDPI, vol. 14(8), pages 1-17, August.
    4. Sayaka Matsui & Saki Noda & Keiko Kuwata & Mika Nomoto & Yasuomi Tada & Hidefumi Shinohara & Yoshikatsu Matsubayashi, 2024. "Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Jiahui Liu & Xiaoyun Wu & Yue Fang & Ye Liu & Esther Oreofe Bello & Yong Li & Ruyi Xiong & Yinzi Li & Zheng Qing Fu & Aiming Wang & Xiaofei Cheng, 2023. "A plant RNA virus inhibits NPR1 sumoylation and subverts NPR1-mediated plant immunity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Fabien Lonjon & Yan Lai & Nasrin Askari & Niharikaa Aiyar & Cedoljub Bundalovic-Torma & Bradley Laflamme & Pauline W. Wang & Darrell Desveaux & David S. Guttman, 2024. "The effector-triggered immunity landscape of tomato against Pseudomonas syringae," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Li Fan & Katja Fröhlich & Eric Melzer & Rory N. Pruitt & Isabell Albert & Lisha Zhang & Anna Joe & Chenlei Hua & Yanyue Song & Markus Albert & Sang-Tae Kim & Detlef Weigel & Cyril Zipfel & Eunyoung Ch, 2022. "Genotyping-by-sequencing-based identification of Arabidopsis pattern recognition receptor RLP32 recognizing proteobacterial translation initiation factor IF1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Gengshen Chen & Bao Zhang & Junqiang Ding & Hongze Wang & Ce Deng & Jiali Wang & Qianhui Yang & Qianyu Pi & Ruyang Zhang & Haoyu Zhai & Junfei Dong & Junshi Huang & Jiabao Hou & Junhua Wu & Jiamin Que, 2022. "Cloning southern corn rust resistant gene RppK and its cognate gene AvrRppK from Puccinia polysora," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:592:y:2021:i:7852:d:10.1038_s41586-021-03316-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.